期刊论文详细信息
BMC Microbiology
Community analysis of bacteria colonizing intestinal tissue of neonates with necrotizing enterocolitis
Lars Mølbak3  Karen A Krogfelt5  Mette Boyé3  Julie Kloppenborg4  Christian Pipper2  Tim K Jensen3  Bodil L Petersen4  Susan Bodé1  Birgitte Smith5 
[1] Neonatel Department 5023, Rigshospitalet, Blegdamsvej, 2100 Kbh. Ø, Denmark;Faculty of Life Sciences, University of Copenhagen, Bülowsvej 17, 1870 Frb., Denmark;National Veterinary Institut- DTU, Bülowsvej 27, 1790 Copenhagen V, Denmark;Pathologic Institut, Rigshospitalet, Blegdamsvej, 2100 Kbh. Ø, Denmark;Statens Serum Institut, Artillerivej 5, 2300 Kbh. S, Denmark
关键词: Ralstornia;    pneumatosis intestinalis;    necrotizing enterocolitis;    microbiota;    laser capture microdissection;    FISH;   
Others  :  1225264
DOI  :  10.1186/1471-2180-11-73
 received in 2010-10-08, accepted in 2011-04-12,  发布年份 2011
PDF
【 摘 要 】

Background

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in newborn neonates. Bacteria are believed to be important in the pathogenesis of NEC but bacterial characterization has only been done on human faecal samples and experimental animal studies. The aim of this study was to investigate the microbial composition and the relative number of bacteria in inflamed intestinal tissue surgically removed from neonates diagnosed with NEC (n = 24). The bacterial populations in the specimens were characterized by laser capture microdissection and subsequent sequencing combined with fluorescent in situ hybridization (FISH), using bacterial rRNA-targeting oligonucleotide probes.

Results

Bacteria were detected in 22 of the 24 specimens, 71% had moderate to high densities of bacteria. The phyla detected by 16S rRNA gene sequencing were: Proteobacteria (49.0%), Firmicutes (30.4%), Actinobacteria (17.1%) and Bacteroidetes (3.6%). A major detected class of the phylum Proteobacteria belonged to δ-proteobacteria. Surprisingly, Clostridium species were only detected in 4 of the specimens by FISH, but two of these specimens exhibited histological pneumatosis intestinalis and both specimens had a moderate to a high density of C. butyricum and C. parputrificum detected by using species specific FISH probes. A 16S rRNA gene sequence tag similar to Ralstonia species was detected in most of the neonatal tissues and members of this genus have been reported to be opportunistic pathogens but their role in NEC has still to be clarified.

Conclusion

In this study, in situ identification and community analysis of bacteria found in tissue specimens from neonates with NEC, were analysed for the first time. Although a large variability of bacteria was found in most of the analyzed specimens, no single or combination of known potential pathogenic bacteria species was dominating the samples suggestive NEC as non-infectious syndrome. However there was a significant correlation between the presence of C. butyricum & C. parputrificum and histological pneumatosis intestinalis. Finally this study emphasizes the possibility to examine the microbial composition directly on excised human tissues to avoid biases from faecal samples or culturing.

【 授权许可】

   
2011 Smith et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150919044157435.pdf 803KB PDF download
Figure 4. 28KB Image download
Figure 3. 26KB Image download
Figure 2. 33KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Lin PW, Stoll BJ: Necrotising enterocolitis. Lancet 2006, 368(9543):1271-1283.
  • [2]Blakely ML, Lally KP, McDonald S, Brown RL, Barnhart DC, Ricketts RR, et al.: Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg 2005, 241(6):984-989.
  • [3]Lee JS, Polin RA: Treatment and prevention of necrotizing enterocolitis. Semin Neonatol 2003, 8(6):449-459.
  • [4]Albanese CT, Rowe MI: Necrotizing Enterocolitis. Semin Pediatr Surg 1995, 4(4):200-206.
  • [5]Claud EC, Walker WA: Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J 2001, 15(8):1398-1403.
  • [6]Alfa MJ, Robson D, Davi M, Bernard K, Van Caeseele P, Harding GK: An outbreak of necrotizing enterocolitis associated with a novel Clostridium species in a neonatal intensive care unit. Clin Infect Dis 2002, 35(Suppl 1):101-105.
  • [7]Bell MJ, Shackelford P, Feigin RD, Ternberg JL, Brotherton T: Epidemiologic and bacteriologic evaluation of neonatal necrotizing enterocolitis. J Pediatr Surg 1979, 14(1):1-4.
  • [8]Carbonaro CA, Clark DA, Elseviers DA: Bacterial pathogenicity determinant associated with necrotizing enterocolitis. Microb Pathog 1988, 5(6):427-436.
  • [9]Dittmar E, Beyer P, Fischer D, Schafer V, Schoepe H, Bauer K, Schlosser R: Necrotizing enterocolitis of the neonate with clostridium perfringens: diagnosis, clinical course, and role of alpha toxin. Eur J Pediatr 2007, 20:10.
  • [10]Suau A: Molecular tools to investigate intestinal bacterial communities. J Pediatr Gastroenterol Nutr 2003, 37(3):222-224.
  • [11]Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben Amor K, Akkermans AD, De Vos WM: Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002, 68(7):3401-3407.
  • [12]Klitgaard K, Molbak L, Jensen TK, Lindboe CF, Boye M: Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization. Biotechniques 2005, 39(6):864-868.
  • [13]Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307(5717):1915-1920.
  • [14]MacDonald TT, Gordon JN: Bacterial regulation of intestinal immune responses. Gastroenterol Clin North Am 2005, 34(3):401.
  • [15]Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE: Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 2118(2):511-521.
  • [16]Xu J, Gordon JI: Inaugural article: honor the symbionts. Proc Natl Acad Sci 2003, 100(18):10452-10459.
  • [17]Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO: Development of the human infant intestinal microbiota. PLoS Biol 2007, 5(7):e177.
  • [18]Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, et al.: 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME 2009, 3(8):944-954.
  • [19]Luna RA, Fasciano LR, Jones SC, Boyanton BL, Ton TT, Versalovic J: DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital Setting. J Clin Microbiol 2007, 45(9):2985-2992.
  • [20]Favre-Bonte S, Licht TR, Forestier C, Krogfelt KA: Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun 1999, 67(11):6152-6156.
  • [21]Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, et al.: Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 2006, 130(6):1776-1792.
  • [22]Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, et al.: Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 2009, 56(1):80-87.
  • [23]Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS, Panigrahi P: Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1999, 80(3):167-173.
  • [24]Gronlund MM, Lehtonen OP, Eerola E, Kero P: Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999, 28(1):19-25.
  • [25]Harmsen HJM, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW: Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000, 30(1):61-67.
  • [26]Bell MJ, Shackelford PG, Feigin RD, Ternberg JL, Brotherton T: Alterations in gastrointestinal microflora during antimicrobial therapy for necrotizing enterocolitis. Pediatrics 1979, 63(3):425-428.
  • [27]Millar MR, MacKay P, Levene M, Langdale V, Martin C: Enterobacteriaceae and neonatal necrotising enterocolitis. Arch Dis Child 1992, 67:53-56.
  • [28]Waligora-Dupriet A, Dugay A, Auzeil N, Huerre M, Butel M: Evidence for Clostridial Implication in Necrotizing Enterolitis through Bacterial Fermentation in a Gnotobiotic Quail Model. Pediatr Res 2005, 58(4):629-635.
  • [29]Deris ZZ, Van Rostenberghe H, Habsah H, Noraida R, Tan GC, Chan YY, et al.: First isolation of Burkholderia tropica from a neonatal patient successfully treated with imipenem. Int J InfectDis 2009, 22:5.
  • [30]Ryan MP, Pembroke JT, Adley CC: Ralstonia pickettii: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect 2006, 62(3):278-284.
  • [31]Nordmann P, Poirel L, Kubina M, Casetta A, Naas T: Biochemical-genetic characterization and distribution of OXA-22, a chromosomal and inducible class D β-lactamase from Ralstonia (Pseudomonas) pickettii.Antimicro. Agents and Chem 2000, 44(8):2201-2204.
  • [32]Burns JL, Emerson J, Stapp JR, Yim DL, Krzewinski J, Louden L, Ramsey BW, Clausen CR: Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis 1998, 27(1):158-163.
  • [33]Riley PS, Weaver RE: Recognition of Pseudomonas pickettii in the clinical laboratory: biochemical characterization of 62 strains. J Clin Microbiol 1975, 1(1):61-64.
  • [34]Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308(5728):1635-1638.
  • [35]Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al.: Topographical and temporal diversity of the human skin microbiome. Science 2009, 324(5931):1190-1192.
  • [36]Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, Sogin ML: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008, 4(11):e1000255.
  • [37]Alm EW, Oerther DB, Larsen N, Stahl DA, Raskin L: The Oligonucleotide Probe Database. Appl Environ Microbiol 1996, 62(10):3557-3559.
  • [38]Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH: Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microb 1996, 142:1097-106.
  • [39]Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH: In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiol 1994, 140:2849-2858.
  • [40]Harmsen HJM, Elfferich P, Schut F, Welling GW: A 16S rRNA-targeted probe for detection of Lactobacilli and Enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 1999, 11:3-12.
  • [41]Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW: Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 1995, 61:3069-3075.
  • [42]Yu ZT, Yu M, Morrison M: Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides sa rapid, comprehensive, sequence-based characterization of bacterial diversity and community. Environ Microbiol 2006, 8(4):603-611.
  文献评价指标  
  下载次数:20次 浏览次数:27次