期刊论文详细信息
BMC Research Notes
Diversity of heterotrimeric G-protein γ subunits in plants
José Ramón Botella2  David Chakravorty1  Yuri Trusov2 
[1] Biology Department, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania, 16802, USA;Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
关键词: S-acylation;    Prenylation;    Signal transduction;    Heterotrimeric G-proteins;   
Others  :  1165321
DOI  :  10.1186/1756-0500-5-608
 received in 2012-06-28, accepted in 2012-10-15,  发布年份 2012
PDF
【 摘 要 】

Background

Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated.

Results

After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits.

Conclusion

Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

【 授权许可】

   
2012 Trusov et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416025846869.pdf 1028KB PDF download
Figure 2. 81KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Gautam N, Downes GB, Yan K, Kisselev O: The G-protein βγ complex. Cell Signal 1998, 10:447-455.
  • [2]Gilman AG: G-proteins - transducers of receptor-generated signals. Annu Rev Biochem 1987, 56:615-649.
  • [3]McIntire WE: Structural determinants involved in the formation and activation of G protein βγ dimers. Neurosignals 2009, 17:82-99.
  • [4]Assmann SM: Plant G proteins, phytohormones, and plasticity: three questions and a speculation. Science's STKE 2004, 2004:20.
  • [5]Perfus-Barbeoch L, Jones AM, Assmann SM: Plant heterotrimeric G protein function: insights from arabidopsis and rice mutants. Current Opinion in Plant Biology 2004, 7:719-731.
  • [6]Trusov Y, Botella JR: New faces in plant innate immunity: heterotrimeric G proteins. J Plant Biochem Biotechnol 2012. in press
  • [7]Trusov Y, Jorda L, Molina A, Botella JR: G proteins and plant innate immunity. Netherlands: Springer; 2010.
  • [8]Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS: The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in arabidopsis. Plant Physiol 2007, 143:1590-1600.
  • [9]Assmann SM: Heterotrimeric and unconventional GTP binding proteins in plant cell signalling. Plant Cell 2002, 2002:S355-373. Supplement
  • [10]Chakravorty D, Trusov Y, Zhang W, Sheahan MB, Acharya BW, McCurdy DW, Assmann SM, Botella JR: A highly atypical heterotrimeric G protein γ subunit is involved in guard cell K+ channel regulation and morphological development in Arabidopsis thaliana. Plant J 2011, 67:840-851.
  • [11]Mason MG, Botella JR: Completing the heterotrimer: isolation and characterization of an arabidopsis thaliana G protein γ -subunit cDNA. Proc Natl Acad Sci U S A 2000, 97:14784-14788.
  • [12]Mason MG, Botella JR: Isolation of a novel G-protein γ-subunit from arabidopsis thaliana and its interaction with Gβ. Biochim Biophys Acta 2001, 1520:147-153.
  • [13]Thung L, Trusov Y, Chakravorty D, Botella JR: Gγ1+Gγ2+Gγ3=Gβ: the search for heterotrimeric G-protein γ subunits in arabidopsis is over. J Plant Physiology 2012, 169:542-545.
  • [14]Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR: Heterotrimeric G protein γ subunits provide functional selectivity in G βγ dimer signaling in arabidopsis. Plant Cell 2007, 19:1235-1250.
  • [15]Trusov Y, Zhang W, Assmann SM, Botella JR: Gγ1+Gγ2 ≠ Gβ: heterotrimeric G protein Gγ-deficient mutants do not recapitulate all phenotypes of Gβ-deficient mutants. Plant Physiol 2008, 147:636-649.
  • [16]Bisht NC, Jez JM, Pandey S: An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. New Phytol 2010, 190:35-48.
  • [17]Hossain MS, Koba T, Harada K: Cloning and characterization of two full-length cDNAs, TaGA1 and TaGA2, encoding G-protein α subunits expressed differentially in wheat genome. Genes & Genetic Systems 2003, 78:127-138.
  • [18]Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N: Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 2007, 51:656-669.
  • [19]Choudhury SR, Bisht NC, Thompson R, Todorov O, Pandey S: Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS One 2011, 6:e23361.
  • [20]Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB: The 2.0 A crystal structure of a heterotrimeric G protein. Nature 1996, 379:311-319.
  • [21]Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB: Crystal structure of a G-protein By dimer at 2.1A resolution. Nature 1996, 379:369-374.
  • [22]Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB: Assembly and trafficking of heterotrimeric G proteins. Biochemistry 2007, 46:7665-7677.
  • [23]Anderson DJ, Botella JR: Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein β-subunit AGB1. Plant Cell Reporter 2007, 26:1469-1480.
  • [24]Balcueva EA, Wang Q, Hughes H, Kunsch C, Yu Z, Robishaw JD: Human G protein γ11 and γ14 subtypes define a new functional subclass. Experimental Cell Res 2000, 257:310-319.
  • [25]Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI, Shizuya H: Genomic characterization of the human heterotrimeric G protein α, β, and γ subunit genes. DNA Res 2000, 7:111-120.
  • [26]Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hirobe A, Fujisawa Y, Kato H, Iwasaki Y: Characterisation of heterotrimeric G protein complexs in rice plasma membrane. Plant J 2004, 38:320-331.
  • [27]Adjobo-Hermans MJW, Goedhart J, Gadella TWJ Jr: Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation. J Cell Sci 2006, 119:5087-5097.
  • [28]Zeng Q, Wang X, Running MP: Dual lipid modification of Arabidopsis Gγ-subunits is required for efficient plasma membrane targeting. Plant Physiol 2007, 143:1119-1131.
  • [29]Chakravorty D, Botella JR: Over-expression of a truncated Arabidopsis thaliana heterotrimeric G protein γ subunit results in a phenotype similar to α and β subunit knockouts. Gene 2007, 393:163-170.
  • [30]Iniguez-Lluhi JA, Simon MI, Robishaw JD, Gilman AG: G protein by subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of y. J Biol Chem 1992, 267:23409-23417.
  • [31]Simonds WF, Butrynski JE, Gautam N, Unson CG, Spiegel AM: G-protein βγ dimers. Membrane targeting requires subunit coexpression and intact γ C-A-A-X domain. J Biol Chem 1991, 266:5363-5366.
  • [32]Takida S, Wedegaertner PB: Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gβγ. J Biol Chem 2003, 278:17284-17290.
  • [33]Altschul SF, Koonin EV: Iterated profile searches with PSI-BLAST–a tool for discovery in protein databases. Trends in Biochemical Sci 1998, 23:444-447.
  • [34]Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 2006, 112:1164-1171.
  • [35]Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X: Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 2009, 41:494-497.
  • [36]Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S: Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 2009, 182:1323-1334.
  • [37]Botella JR: Can heterotrimeric G proteins help to feed the world? Trends Plant Sci 2012, 17:563-568.
  • [38]Cook LA, Schey KL, Cleator JH, Wilcox MD, Dingus J, Hildebrandt JD: Identification of a region in G protein γ subunits conserved across species but hypervariable among subunit isoforms. Protein Sci 2001, 10:2548-2555.
  • [39]Temple BRS, Jones AM: The plant heterotrimeric G-protein complex. Annual Rev Plant Biology 2007, 58:249-266.
  • [40]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, et al.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
  • [41]Felsenstein J: PHYLIP - phylogeny inference package (version 3.2). Cladistics 1989, 5:164-166.
  • [42]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [43]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [44]Finet C, Timme RE, Delwiche CF, Marletaz F: Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 2010, 20:2217-2222.
  • [45]Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH: The complete family of genes encoding G proteins of caenorhabditis elegans. Nat Genet 1999, 21:414-419.
  • [46]Krystofova S, Borkovich KA: The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and galpha protein levels in Neurospora crassa. Eukaryotic Cell 2005, 4:365-378.
  • [47]Zhang N, Long Y, Devreotes PN: Gγ in Dictyostelium: its role in localization of Gβγ to the membrane is required for chemotaxis in shallow gradients. Mol Biology of the Cell 2001, 12:3204-3213.
  • [48]Jones AM, Assmann SM: Plants: the latest model system for G-protein research. EMBO Rep 2004, 5:572-578.
  • [49]Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM: The β-Subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 2003, 15:393-409.
  • [50]Warpeha KM, Kaufman LS: Opposite ends of the spectrum: plant and animal g-protein signaling. Plant Signaling and Behavior 2007, 2:480-482.
  • [51]Llorente F, Alonso-Blanco C, Sanchez-Rodriguez C, Jorda L, Molina A: ERECTA receptor-like kinase and heterotrimeric G protein from arabidopsis are required for resistance to the necrotrophic fungus plectosphaerella cucumerina. Plant J 2005, 43:165-180.
  • [52]Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K: The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 2002, 99:13307-13312.
  • [53]Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR: Heterotrimeric G-proteins facilitate arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 2006, 140:210-220.
  • [54]Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR: Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 2009, 58:69-81.
  • [55]Zhang W, He SY, Assmann SM: The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 2008, 56:984-996.
  • [56]Delgado-Cerezo M, Sanchez-Rodriguez C, Escudero V, Miedes E, Fernandez PV, Jorda L, Hernandez-Blanco C, Sanchez-Vallet A, Bednarek P, Schulze-Lefert P, et al.: Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol Plant 2012, 5:98-114.
  • [57]Crowell DN, Huizinga DH: Protein isoprenylation: the fat of the matter. Trends Plant Sci 2009, 14:163-170.
  • [58]Maurer-Stroh S, Washietl S, Eisenhaber F: Protein prenyltransferases. Genome Biol 2003, 4:212. BioMed Central Full Text
  • [59]Lane KT, Beese LS: Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 2006, 47:681-699.
  • [60]Kilpatrick EL, Hildebrandt JD: Sequence dependence and differential expression of Gγ5 subunit isoforms of the heterotrimeric G proteins variably processed after prenylation in mammalian cells. J Biol Chem 2007, 282:14038-14047.
  • [61]Andrews M, Huizinga DH, Crowell DN: The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC Plant Biology 2010, 10:118. BioMed Central Full Text
  • [62]Bizzozero OA, Bixler HA, Pastuszyn A: Structural determinants influencing the reaction of cysteine-containing peptides with palmitoyl-coenzyme A and other thioesters. Biochim Biophys Acta 2001, 1545:278-288.
  • [63]Hemsley PA: Protein S-acylation in plants. Mol Membr Biol 2009, 26:114-125.
  • [64]Gambhir A, Hangyas-Mihalyne G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyala SN, Smith SO, McLaughlin S: Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J 2004, 86:2188-2207.
  • [65]Prinz WA, Hinshaw JE: Membrane-bending proteins. Crit Rev Biochem Mol Biol 2009, 44:278-291.
  • [66]Zhang W, Crocker E, McLaughlin S, Smith SO: Binding of peptides with basic and aromatic residues to bilayer membranes: phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. J Biol Chem 2003, 278:21459-21466.
  • [67]Roy MO, Leventis R, Silvius JR: Mutational and biochemical analysis of plasma membrane targeting mediated by the farnesylated, polybasic carboxy terminus of K-ras4B. Biochemistry 2000, 39:8298-8307.
  • [68]Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S: Receptor activation alters inner surface potential during phagocytosis. Science 2006, 313:347-351.
  • [69]Zharkikh AA, Rzhetsky A, Morosov PS, Sitnikova TL, Krushkal JS: VOSTORG: a package of microcomputer programs for sequence analysis and construction of phylogenetic trees. Gene 1991, 101:251-254.
  • [70]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  文献评价指标  
  下载次数:28次 浏览次数:14次