期刊论文详细信息
BMC Systems Biology
The protein-protein interaction network of eyestalk, Y-organ and hepatopancreas in Chinese mitten crab Eriocheir sinensis
Jinsheng Sun2  Xuyun Geng2  Yichen Liu1  Yichen Zhang1  Bin Wang1  Zheng Zeng1  Tong Hao1 
[1] Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Science, Tianjin Normal University, Tianjin 300387, P.R. China;Tianjin Aquatic Animal Infectious Disease Control and Prevention Center, Tianjin 300221, P.R. China
关键词: Evolution path;    Signal transduction;    Network integration;    Chinese mitten crab;    Eriocheir sinensis;   
Others  :  866592
DOI  :  10.1186/1752-0509-8-39
 received in 2014-01-11, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

The protein-protein interaction network (PIN) is an effective information tool for understanding the complex biological processes inside the cell and solving many biological problems such as signaling pathway identification and prediction of protein functions. Eriocheir sinensis is a highly-commercial aquaculture species with an unclear proteome background which hinders the construction and development of PIN for E. sinensis. However, in recent years, the development of next-generation deep-sequencing techniques makes it possible to get high throughput data of E. sinensis tanscriptome and subsequently obtain a systematic overview of the protein-protein interaction system.

Results

In this work we sequenced the transcriptional RNA of eyestalk, Y-organ and hepatopancreas in E. sinensis and generated a PIN of E. sinensis which included 3,223 proteins and 35,787 interactions. Each protein-protein interaction in the network was scored according to the homology and genetic relationship. The signaling sub-network, representing the signal transduction pathways in E. sinensis, was extracted from the global network, which depicted a global view of the signaling systems in E. sinensis. Seven basic signal transduction pathways were identified in E. sinensis. By investigating the evolution paths of the seven pathways, we found that these pathways got mature in different evolutionary stages. Moreover, the functions of unclassified proteins and unigenes in the PIN of E. sinensis were predicted. Specifically, the functions of 549 unclassified proteins related to 864 unclassified unigenes were assigned, which respectively covered 76% and 73% of all the unclassified proteins and unigenes in the network.

Conclusions

The PIN generated in this work is the first large-scale PIN of aquatic crustacean, thereby providing a paradigmatic blueprint of the aquatic crustacean interactome. Signaling sub-network extracted from the global PIN depicts the interaction of different signaling proteins and the evolutionary paths of the identified signal transduction pathways. Furthermore, the function assignment of unclassified proteins based on the PIN offers a new reference in protein function exploration. More importantly, the construction of the E. sinensis PIN provides necessary experience for the exploration of PINs in other aquatic crustacean species.

【 授权许可】

   
2014 Hao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727075422324.pdf 1240KB PDF download
67KB Image download
19KB Image download
29KB Image download
47KB Image download
86KB Image download
59KB Image download
47KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mosca R, Pons T, Ceol A, Valencia A, Aloy P: Towards a detailed atlas of protein-protein interactions. Curr Opin Struct Biol 2013, 23:929-940.
  • [2]Navlakha S, Gitter A, Bar-Joseph Z: A network-based approach for predicting missing pathway interactions. PLoS Comput Biol 2012, 8:e1002640.
  • [3]Chen B, Fan W, Liu J, Wu FX: Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks. Brief Bioinform 2013, 15:177-194.
  • [4]Zeng E, Ding C, Narasimhan G, Holbrook SR: Estimating support for protein-protein interaction data with applications to function prediction. Comput Syst Bioinformatics Conf 2008, 7:73-84.
  • [5]Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, VijayRaghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S: A protein complex network of Drosophila melanogaster. Cell 2011, 147:690-703.
  • [6]Kuhner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castano-Diez D, Chen WH, Devos D, Guell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Bottcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin AC: Proteome organization in a genome-reduced bacterium. Science 2009, 326:1235-1240.
  • [7]Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G, Yang W, Pogoutse O, Guo X, Phanse S, Wong P, Chandran S, Christopoulos C, Nazarians-Armavil A, Nasseri NK, Musso G, Ali M, Nazemof N, Eroukova V, Golshani A, Paccanaro A, Greenblatt JF, Moreno-Hagelsieb G, Emili A: Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 2009, 7:e96.
  • [8]Schwikowski B, Uetz P, Fields S: A network of protein-protein interactions in yeast. Nat Biotechnol 2000, 18:1257-1261.
  • [9]Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 2001, 98:4569-4574.
  • [10]Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415:180-183.
  • [11]Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, et al.: A protein interaction map of Drosophila melanogaster. Science 2003, 302:1727-1736.
  • [12]Kim KK, Kim HB: Protein interaction network related to Helicobacter pylori infection response. World J Gastroenterol 2009, 15:4518-4528.
  • [13]Marchadier E, Carballido-Lopez R, Brinster S, Fabret C, Mervelet P, Bessieres P, Noirot-Gros MF, Fromion V, Noirot P: An expanded protein-protein interaction network in Bacillus subtilis reveals a group of hubs: Exploration by an integrative approach. Proteomics 2011, 11:2981-2991.
  • [14]Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
  • [15]Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, et al.: High-quality binary protein interaction map of the yeast interactome network. Science 2008, 322:104-110.
  • [16]Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, et al.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437:1173-1178.
  • [17]Couzens AL, Knight JD, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, Wrana JL, Choi H, Gingras AC: Protein interaction network of the Mammalian hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 2013, 6:rs15.
  • [18]Zhang Y, Sun Y, Liu Y, Geng X, Wang X, Wang Y, Sun J, Yang W: Molt-inhibiting hormone from Chinese mitten crab (Eriocheir sinensis): Cloning, tissue expression and effects of recombinant peptide on ecdysteroid secretion of YOs. Gen Comp Endocrinol 2011, 173:467-474.
  • [19]Yu AQ, Jin XK, Guo XN, Li S, Wu MH, Li WW, Wang Q: Two novel Toll genes (EsToll1 and EsToll2) from Eriocheir sinensis are differentially induced by lipopolysaccharide, peptidoglycan and zymosan. Fish Shellfish Immunol 2013, 35:1282-1292.
  • [20]Yanhua Wang YZ, Sun Y, Liu Y, Geng X, Sun J: cloing and molecular structure analysis of crustacean hyperglycemic hormone (Ers-CHH) in Eriocheir sinensis. J Fish China 2013, 37:987-993.
  • [21]Li X, Cui Z, Liu Y, Song C, Shi G: Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis. PLoS One 2013, 8:e68233.
  • [22]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [23]Marguerat S, Bahler J: RNA-seq: from technology to biology. Cell Mol Life Sci 2010, 67:569-579.
  • [24]Peters JM, Franke WW, Kleinschmidt JA: Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 1994, 269:7709-7718.
  • [25]Zhao B, Tumaneng K, Guan KL: The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011, 13:877-883.
  • [26]Halder G, Johnson RL: Hippo signaling: growth control and beyond. Development 2011, 138:9-22.
  • [27]Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y: Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 2005, 120:675-685.
  • [28]Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H: The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 2010, 18:309-316.
  • [29]Krebs DL, Hilton DJ: SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001, 19:378-387.
  • [30]Shuai K: Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 2006, 16:196-202.
  • [31]Liu Y, Yan X, Zhou T: TBCK influences cell proliferation, cell size and mTOR signaling pathway. PLoS One 2013, 8:e71349.
  • [32]Clevers H: Wnt/beta-catenin signaling in development and disease. Cell 2006, 127:469-480.
  • [33]Radtke F, MacDonald HR, Tacchini-Cottier F: Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol 2013, 13:427-437.
  • [34]Li L, Tibiche C, Fu C, Kaneko T, Moran MF, Schiller MR, Li SS, Wang E: The human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. Genome Res 2012, 22:1222-1230.
  • [35]Pan D: The hippo signaling pathway in development and cancer. Dev Cell 2010, 19:491-505.
  • [36]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
  • [37]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [38]Hinz U: From protein sequences to 3D-structures and beyond: the example of the UniProt knowledgebase. Cell Mol Life Sci 2010, 67:1049-1064.
  • [39]Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S: Integrated network analysis platform for protein-protein interactions. Nat Methods 2009, 6:75-77.
  • [40]Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi S, Wu J: PINA v2.0: mining interactome modules. Nucleic Acids Res 2012, 40:D862-D865.
  • [41]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25-29.
  • [42]Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A 2003, 100:11394-11399.
  • [43]J.A.Bondy USRM: Graph theory with applications. Macmillan Press Ltd 1976.
  • [44]Diestel R: Graph theory. N Y 2005.
  • [45]Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’ networks. Nature 1998, 393:440-442.
  • [46]Vazquez A, Flammini A, Maritan A, Vespignani A: Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 2003, 21:697-700.
  文献评价指标  
  下载次数:89次 浏览次数:6次