期刊论文详细信息
BMC Genomics
Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea)
Carlos Juan1  Damià Jaume2  Maria M Bauzà-Ribot1  Joan Pons2 
[1] Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Spain;IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, c/Miquel Marquès 21, 07190 Esporles, Spain
关键词: Mitochondrial RNA secondary structure;    Mitogenome evolution;    Metacrangonyx;    Amphipoda;    Crustacea;   
Others  :  1216505
DOI  :  10.1186/1471-2164-15-566
 received in 2014-03-05, accepted in 2014-06-26,  发布年份 2014
PDF
【 摘 要 】

Background

Comparative mitochondrial genomic analyses are rare among crustaceans below the family or genus level. The obliged subterranean crustacean amphipods of the family Metacrangonyctidae, found from the Hispaniola (Antilles) to the Middle East, including the Canary Islands and the peri-Mediterranean region, have an evolutionary history and peculiar biogeography that can respond to Tethyan vicariance. Indeed, recent phylogenetic analysis using all protein-coding mitochondrial sequences and one nuclear ribosomal gene have lent support to this hypothesis (Bauzà-Ribot et al. 2012).

Results

We present the analyses of mitochondrial genome sequences of 21 metacrangonyctids in the genera Metacrangonyx and Longipodacrangonyx, covering the entire geographical range of the family. Most mitogenomes were attained by next-generation sequencing techniques using long-PCR fragments sequenced by Roche FLX/454 or GS Junior pyro-sequencing, obtaining a coverage depth per nucleotide of up to 281×. All mitogenomes were AT-rich and included the usual 37 genes of the metazoan mitochondrial genome, but showed a unique derived gene order not matched in any other amphipod mitogenome. We compare and discuss features such as strand bias, phylogenetic informativeness, non-synonymous/synonymous substitution rates and other mitogenomic characteristics, including ribosomal and transfer RNAs annotation and structure.

Conclusions

Next-generation sequencing of pooled long-PCR amplicons can help to rapidly generate mitogenomic information of a high number of related species to be used in phylogenetic and genomic evolutionary studies. The mitogenomes of the Metacrangonyctidae have the usual characteristics of the metazoan mitogenomes (circular molecules of 15,000-16,000 bp, coding for 13 protein genes, 22 tRNAs and two ribosomal genes) and show a conserved gene order with several rearrangements with respect to the presumed Pancrustacean ground pattern. Strand nucleotide bias appears to be reversed with respect to the condition displayed in the majority of crustacean mitogenomes since metacrangonyctids show a GC-skew at the (+) and (-) strands; this feature has been reported also in the few mitogenomes of Isopoda (Peracarida) known thus far. The features of the rRNAs, tRNAs and sequence motifs of the control region of the Metacrangonyctidae are similar to those of the few crustaceans studied at present.

【 授权许可】

   
2014 Pons et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701013847661.pdf 2924KB PDF download
Figure 8. 90KB Image download
Figure 7. 90KB Image download
Figure 6. 122KB Image download
Figure 5. 67KB Image download
Figure 4. 97KB Image download
Figure 3. 59KB Image download
Figure 2. 83KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Waeschenbach A, Telford MJ, Porter JS, Littlewood DT: The complete mitochondrial genome of Flustrellidra hispida and the phylogenetic position of Bryozoa among the Metazoa. Mol Phylogenet Evol 2006, 40:195-207.
  • [2]Fernández-Silva P, Enriquez JA, Montoya J: Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 2003, 88:41-56.
  • [3]Zhang D-X, Hewitt GM: Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 1997, 25:99-120.
  • [4]Saito S, Tamura K, Aotsuka T: Replication origin of mitochondrial DNA in insects. Genetics 2005, 171:1695-1705.
  • [5]Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, von Reumont B, Schierwater B, Schlegel M, Schrödl M, Simon S, Stadler PF, Stöger I, Struck TH: A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013, 69:352-364.
  • [6]Schierwater B, Stadler P, DeSalle R, Podsiadlowski L: Mitogenomics and metazoan evolution. Mol Phylogenet Evol 2013, 69:311-312.
  • [7]Zhang P, Zhou H, Chen YQ, Liu YF, Qu LH: Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst Biol 2005, 54:391-400.
  • [8]Pacheco MA, Battistuzzi FU, Lentino M, Aguilar R, Kumar S, Escalante AA: Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 2011, 28:1927-1942.
  • [9]Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Abel Nielsen SC, Rasmussen M, Willerslev E, Gilbert MT, Harkins T: Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 2010, 20:908-916.
  • [10]Wielstra B, Arntzen JW: Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 2011, 11:162.
  • [11]Krebes L, Bastrop R: The mitogenome of gammarus duebeni (crustacea amphipoda): a new gene order and non-neutral sequence evolution of tandem repeats in the control region. Comp Biochem Physiol Part D Genomics Proteomics 2012, 7:201-211.
  • [12]Bauzà-Ribot MM, Juan C, Nardi F, Oromí P, Pons J, Jaume D: Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Curr Biol 2012, 22:2069-2074.
  • [13]Stock JH: The taxonomy and zoogeography of hadziid amphipoda, with emphasis on the west Indian taxa. Stud Fauna Curaçao Caribbean Isl 1977, 55:1-130.
  • [14]Ito A, Aoki MN, Yokobori S, Wada H: The complete mitochondrial genome of caprella scaura (crustacea, amphipoda, caprellidea), with emphasis on the unique gene order pattern and duplicated control region. Mitochondrial DNA 2010, 21:183-190.
  • [15]Kilpert F, Held C, Podsiadlowski L: Multiple rearrangements in mitochondrial genomes of isopoda and phylogenetic implications. Mol Phylogenet Evol 2012, 64:106-117.
  • [16]Bauzà-Ribot MM, Jaume D, Juan C, Pons J: The complete mitochondrial genome of the subterranean crustacean metacrangonyx longipes (amphipoda): a unique gene order and extremely short control region. Mitochondrial DNA 2009, 20:88-99.
  • [17]Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM: Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 1995, 376:163-165.
  • [18]Boore JL, Lavrov DV, Brown WM: Gene translocation links insects and crustaceans. Nature 1998, 392:667-668.
  • [19]Cook CE, Yue Q, Akam M: Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. P Roy Soc B Biol Sci 2005, 272:1295-1304.
  • [20]Shin SC, Cho J, Lee JK, Ahn do H, Lee H, Park H: Complete mitochondrial genome of the Antarctic amphipod gondogeneia Antarctica (crustacea, amphipod). Mitochondrial DNA 2012, 23:25-27.
  • [21]Ki JS, Hop H, Kim SJ, Kim IC, Park HG, Lee JS: Complete mitochondrial genome sequence of the arctic gammarid, onisimus nanseni (crustacea; amphipoda): novel gene structures and unusual control region features. Comp Biochem Physiol Part D Genomics Proteomics 2010, 5:105-115.
  • [22]Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler P, Middendorf M: CREx: inferring genomic rearrangements based on common intervals. Bioinformatics 2007, 23:2957-2958.
  • [23]Yang JS, Nagasawa H, Fujiwara Y, Tsuchida S, Yang WJ: The complete mitochondrial genome sequence of the hydrothermal vent galatheid crab shinkaia crosnieri (crustacea: decapoda: anomura): a novel arrangement and incomplete tRNA suite. BMC Genom 2008, 9:257.
  • [24]Hassanin A, Leger N, Deutsch J: Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst Biol 2005, 54:277-298.
  • [25]Kilpert F, Podsiadlowski L: The complete mitochondrial genome of the common sea slater, ligia oceanica (crustacea, isopoda) bears a novel gene order and unusual control region features. BMC Genom 2006, 7:241.
  • [26]Kilpert F, Podsiadlowski L: The Australian fresh water isopod (phreatoicidea: isopoda) allows insights into the early mitogenomic evolution of isopods. Comp Biochem Physiol Part D Genomics Proteomics 2010, 5:36-44.
  • [27]Wright F: The ‘effective number of codons’ used in a gene. Gene 1990, 87:23-29.
  • [28]Wang Y, Huang XL, Qiao GX: Comparative analysis of mitochondrial genomes of five aphid species (hemiptera: aphididae) and phylogenetic implications. PLoS One 2013, 8:e77511.
  • [29]Giráldez F, Townsend JP: PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol 2011, 11:152.
  • [30]Havird JC, Santos SR: Performance of single and concatenated sets of mitochondrial genes at inferring metazoan relationships relative to full mitogenome data. PLoS One 2014, 9:e84080.
  • [31]Oliveira DC, Raychoudhury R, Lavrov DV, Werren JH: Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera: pteromalidae). Mol Biol Evol 2008, 25:2167-2180.
  • [32]Lloyd RE, Foster PG, Guille M, Littlewood DT: Next generation sequencing and comparative analyses of xenopus mitogenomes. BMC Genom 2012, 13:496.
  • [33]Castellana S, Vicario S, Saccone C: Evolutionary patterns of the mitochondrial genome in metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol Evol 2011, 3:1067-1079.
  • [34]Ojala D, Montoya J, Attardi G: tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290:470-474.
  • [35]Jühling F, Püz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF: Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 2012, 40(7):2833-2845.
  • [36]Cheng N, Mao Y, Shi Y, Tao S: Coevolution in RNA molecules driven by selective constraints: evidence from 5S rRNA. PLoS One 2012, 7:e44376.
  • [37]Chao JA, Patskovsky Y, Almo SC, Singer RH: Structural basis for the coevolution of a viral RNA–protein complex. Nat Struct Mol Biol 2008, 15:103-105.
  • [38]Lavrov DV, Brown WM, Boore JL: A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede lithobius forficatus. Proc Natl Acad Sci U S A 2000, 97:13738-13742.
  • [39]Bernt M, Braband A, Schierwater B, Stadler PF: Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2013, 69:328-338.
  • [40]Plazzi F, Ribani A, Passamonti M: The complete mitochondrial genome of solemya velum (mollusca: bivalvia) and its relationships with conchifera. BMC Genom 2013, 14:409.
  • [41]Doublet V, Helleu Q, Raimond R, Souty-Grosset C, Marcadé I: Inverted repeats and genome architecture conversions of terrestrial isopods mitochondrial DNA. J Mol Evol 2013, 77:107-118.
  • [42]Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR: The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002, 3:2.
  • [43]Negrisolo E, Babbucci M, Patarnello T: The mitochondrial genome of the ascalaphid owlfly libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects. BMC Genom 2011, 12:221.
  • [44]Carapelli A, Soto-Adames FN, Simon C, Frati F, Nardi F, Dallai R: Secondary structure, high variability and conserved motifs for domain III of 12S rRNA in the arthropleona (hexapoda; collembola). Insect Mol Biol 2004, 13:659-670.
  • [45]Carapelli A, Comandi S, Convey P, Nardi F, Frati F: The complete mitochondrial genome of the Antarctic springtail cryptopygus antarcticus (hexapoda: collembola). BMC Genom 2008, 9:315.
  • [46]Meyer M, Stenzel U, Myles S, Prufer K, Hofreiter M: Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res 2007, 35:e97.
  • [47]Timmermans M, Dodsworth S, Culverwell L, Bocak L, Ahrens D, Littlewood DT, Pons J, Vogler AP: Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 2010, 38:e197.
  • [48]Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF: MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013, 69:313-319.
  • [49]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [50]Perna NT, Kocher TD: Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 1995, 41:353-358.
  • [51]Supek F, Vlahovicek K, INCA: Synonymous codon usage analysis and clustering by means of self-organizing map. Bioinformatics 2004, 14:2329-2330.
  • [52]Rice P, Longden I, Bleasby A: EMBOSS: the European molecular biology open software suite. Trends Genet 2000, 16:276-277.
  • [53]Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 1994, 11:725-736.
  • [54]Yang Z: PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [55]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [56]Stocsits RR, Letsch H, Hertel J, Misof B, Stadler PF: Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Res 2009, 37:6184-6193.
  • [57]Darty K, Denise A, Ponty Y: VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25:1974-1975.
  • [58]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31:3406-3415.
  • [59]Simossis VA, Heringa J: PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 2005, 33:W289-W294.
  文献评价指标  
  下载次数:57次 浏览次数:38次