BMC Evolutionary Biology | |
Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D | |
Stephen R Palumbi1  Daniel J Barshis1  Jason T Ladner1  | |
[1] Department of Biology, Stanford University, Hopkins Marine Station, 93950, Pacific Grove, CA USA | |
关键词: Symbiont shuffling; High-throughput sequencing; Zooxanthellae; Transcriptome; Dinoflagellate; Symbiosis; Coral; Thermal tolerance; Symbiodinium; | |
Others : 1140099 DOI : 10.1186/1471-2148-12-217 |
|
received in 2012-06-16, accepted in 2012-10-17, 发布年份 2012 | |
![]() |
【 摘 要 】
Background
The symbiosis between reef-building corals and photosynthetic dinoflagellates (Symbiodinium) is an integral part of the coral reef ecosystem, as corals are dependent on Symbiodinium for the majority of their energy needs. However, this partnership is increasingly at risk due to changing climatic conditions. It is thought that functional diversity within Symbiodinium may allow some corals to rapidly adapt to different environments by changing the type of Symbiodinium with which they partner; however, very little is known about the molecular basis of the functional differences among symbiont groups. One group of Symbiodinium that is hypothesized to be important for the future of reefs is clade D, which, in general, seems to provide the coral holobiont (i.e., coral host and associated symbiont community) with elevated thermal tolerance. Using high-throughput sequencing data from field-collected corals we assembled, de novo, draft transcriptomes for Symbiodinium clades C and D. We then explore the functional basis of thermal tolerance in clade D by comparing rates of coding sequence evolution among the four clades of Symbiodinium most commonly found in reef-building corals (A-D).
Results
We are able to highlight a number of genes and functional categories as candidates for involvement in the increased thermal tolerance of clade D. These include a fatty acid desaturase, molecular chaperones and proteins involved in photosynthesis and the thylakoid membrane. We also demonstrate that clades C and D co-occur within most of the sampled colonies of Acropora hyacinthus, suggesting widespread potential for this coral species to acclimatize to changing thermal conditions via ‘shuffling’ the proportions of these two clades from within their current symbiont communities.
Conclusions
Transcriptome-wide analysis confirms that the four main Symbiodinium clades found within corals exhibit extensive evolutionary divergence (18.5-27.3% avg. pairwise nucleotide difference). Despite these evolutionary distinctions, many corals appear to host multiple clades simultaneously, which may allow for rapid acclimatization to changing environmental conditions. This study provides a first step toward understanding the molecular basis of functional differences between Symbiodinium clades by highlighting a number of genes with signatures consistent with positive selection along the thermally tolerant clade D lineage.
【 授权许可】
2013 Ladner et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150324093343918.pdf | 530KB | ![]() |
|
Figure 4. | 40KB | Image | ![]() |
Figure 3. | 23KB | Image | ![]() |
Figure 2. | 28KB | Image | ![]() |
Figure 1. | 11KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Hallock P: Algal Symbiosis - a Mathematical-Analysis. Mar Biol 1981, 62(4):249-255.
- [2]Muscatine L, Porter J: Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 1977, 27(7):454-460.
- [3]Dubinsky Z, Berman-Frank I: Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. Aquat Sci-Res Across Boundaries 2001, 63:4-17.
- [4]Veron JEN: Corals in space and time: biogeography and evolution of the Scleractinia. New York: Cornell University Press; 1995.
- [5]IPCC: Climate change 2007: synthesis report. In Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. Edited by Pachauri R, Reisinger A. Geneva, Switzerland: IPCC; 2007:104p.
- [6]Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, Gomez E, Harvell C, Sale P, Edwards A, Caldeira K: Coral reefs under rapid climate change and ocean acidification. Science 2007, 318:1737.
- [7]Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J: Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 2003, 301(5635):929-933.
- [8]Rohwer F, Seguritan V, Azam F, Knowlton N: Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 2002, 243:1-10.
- [9]Podesta G, Glynn P: The 199798 El Nino event in Panama and Galapagos: an update of thermal stress indices relative to coral bleaching. Bull Mar Sci 2001, 69:43-59.
- [10]Tchernov D, Gorbunov M, de Vargas C, Yadav S, Milligan A, Haggblom M, Falkowski P: From the Cover: Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci 2004, 101(37):13531-13535.
- [11]Jokiel PL, Coles SL: Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 1990, 8(4):155-162.
- [12]Berkelmans R, De'ath G, Kininmonth S, Skirving W: A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 2004, 23:74-83.
- [13]Hoegh-Guldberg O: Climate change, coral bleaching and the future of the world's coral reefs. Mar Freshw Res 1999, 50:839-866.
- [14]Fitt W, Brown B, Warner M, Dunne R: Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 2001, 20(1):51-65.
- [15]Baker A: Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 2003, 34(1):661-689.
- [16]Buddemeier RW, Fautin DG: Coral Bleaching as an Adaptive Mechanism - a Testable Hypothesis. BioScience 1993, 43(5):320-326.
- [17]Pochon X, Gates RD: A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai. Mol Phylogenet Evol 2010, 56(1):492-497.
- [18]Pochon X, Montoya-Burgos J, Stadelmann B, Pawlowski J: Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 2006, 38:20-30.
- [19]Baker A, Romanski A: Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: Comment on Goulet (2006). Mar Ecol Prog Ser 2007, 335:237-242.
- [20]Mieog J, Van Oppen MJH, Cantin N, Stam W, Olsen J: Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 2007, 26:449-457.
- [21]Silverstein RN, Correa AMS, Baker AC: Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B Biol Sci 2012, 279(1738):2609-2618.
- [22]Banaszak AT, LaJeunesse T, Trench R: The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 2000, 249:219-233.
- [23]LaJeunesse T: Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 2002, 141(2):387-400.
- [24]Rowan R, Knowlton N, Baker A, Jara J: Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 1997, 388(6639):265-269.
- [25]Fabricius K, Mieog J, Colin P, Idip DH, Van Oppen M: Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 2004, 13(8):2445-2458.
- [26]Lajeunesse T, Pettay D, Sampayo E, Phongsuwan N, Brown B, Obura D, Hoegh-Guldberg O, Fitt W: Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 2010, 37(5):785-800.
- [27]Oliver T, Palumbi S: Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional scales. Mar Ecol Prog Ser 2009, 378:93-103.
- [28]Oliver T, Palumbi S: Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 2011, 30(1):241-250.
- [29]Rowan R: Thermal adaptation in reef coral symbionts. Nature 2004, 430:742.
- [30]Berkelmans R, Van Oppen M: The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope'for coral reefs in an era of climate change. Proc R Soc B 2006, 273:2305-2312.
- [31]Oliver T, Palumbi S: Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 2011, 30(2):429-440.
- [32]Glynn PW, Mate JL, Baker AC, Calderon M: Coral bleaching and mortality in panama and ecuador during the 1997–1998 El Nino-Southern Oscillation Event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 2001, 69(1):79-109.
- [33]Jones A, Berkelmans R, Van Oppen MJH, Mieog J, Sinclair W: A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol Sci 2008, 275:1359.
- [34]Abrego D, Ulstrup K, Willis B, Van Oppen M: Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci 2008, 275:2273.
- [35]Barreto F, Moy G, Burton R: Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Mol Ecol 2011, 20(3):560-572.
- [36]Oliver T, Garfield D, Manier M, Haygood R, Wray G, Palumbi S: Whole-Genome Positive Selection and Habitat-Driven Evolution in a Shallow and a Deep-Sea Urchin. Genome Biol Evol 2010, 2:800-814.
- [37]Bayer T, Aranda M, Sunagawa S, Yum LK, DeSalvo MK, Lindquist E, Coffroth MA, Voolstra CR, Medina M: Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals. PLoS One 2012, 7(4):e35269.
- [38]Beck AH, Weng Z, Witten DM, Zhu S, Foley J, Lacroute P, Smith C, Tibshirani R, Rijn M, Sidow A: 3'-end sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS One 2010, 5(1):e8768.
- [39]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
- [40]Knowlton N, Rohwer F: Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 2003, 162:S51-S62.
- [41]Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D: Analysis of an EST library from the dinoflagellate (Symbiodiniumsp.) symbiont of reef-building corals1. J Phycol 2007, 43(5):1010-1021.
- [42]Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis B, Matz MV: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 2009, 10:219. BioMed Central Full Text
- [43]Grasso L, Maindonald J, Rudd S, Hayward D, Saint R, Miller D, Ball E: Microarray analysis identifies candidate genes for key roles in coral development. BMC Genomics 2008, 9(1):540. BioMed Central Full Text
- [44]Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T: Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 2011, 476:320-324.
- [45]Putnam N, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov V: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317:86.
- [46]Huson DH, Auch AF, Qi J, Schuster S: MEGAN analysis of metagenomic data. Genome Res 2007, 17:377-386.
- [47]Min XJ, Butler G, Storms R, Tsang A: OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 2005, 33:W677-W680.
- [48]Remm M, Storm C, Sonnhammer E: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons1. J Mol Biol 2001, 314:1041-1052.
- [49]Kissinger J, Gajria B, Li L, Paulsen I, Roos D: ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res 2003, 31(1):234-236.
- [50]Edgar R: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
- [51]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34:W609-W612.
- [52]Yang Z: PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
- [53]LaJeunesse T: Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a" species" level marker. J Phycol 2001, 37:866-880.
- [54]Anisimova M, Bielawski J, Yang Z: Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 2001, 18:1585.
- [55]Yang Z: On the best evolutionary rate for phylogenetic analysis. Syst Biol 1998, 47:125.
- [56]Zheng Q, Wang X: GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008, 36:W358-W363.
- [57]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995, 57:289-300.
- [58]Carvajal-Rodriguez A, de Una-Alvarez J, Rolan-Alvarez E: A new multitest correction (SGoF) that increases its statistical power when increasing the number of tests. BMC Bioinforma 2009, 10(1):209. BioMed Central Full Text
- [59]Voolstra C, Sunagawa S, Schwarz J, Coffroth M, Yellowlees D, Leggat W, Medina M: Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium). Comp Biochem Physiol Part D Genomics Proteomics 2009, 4(2):67-74.
- [60]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:11-120.
- [61]George RD, McVicker G, Diederich R, Ng SB PA, Swanson WJ, Shendure J, Thomas JH: Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res 2011, 21(10):1686-1694.
- [62]Rowan R, Powers D: Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci 1992, 89(8):3639-3643.
- [63]Smith GJ, Muscatine L: Cell cycle of symbiotic dinoflagellates: variation in G(1) phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar Biol 1999, 134(3):405-418.
- [64]Wilkerson FP, Kobayashi D, Muscatine L: Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 1988, 7:29-36.
- [65]Baer CF, Miyamoto MM, Denver DR: Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007, 8(8):619-631.
- [66]Heilmann I, Mekhedov S, King B, Browse J, Shanklin J: Identification of the Arabidopsis Palmitoyl-Monogalactosyldiacylglycerol  7-Desaturase Gene FAD5, and Effects of Plastidial Retargeting of Arabidopsis Desaturases on the fad5 Mutant Phenotype. Plant Physiol 2004, 136(4):4237-4245.
- [67]Kunst L, Somerville C: A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids. Plant Physiol 1989, 90:943-947.
- [68]Feder M, Hofmann G: Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999, 61:243-282.
- [69]Leggat W, Yellowlees D, Medina M: Recent progress in Symbiodinium transcriptomics. J Exp Mar Biol Ecol 2011, 408(1–2):120-125.
- [70]Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH: Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Clim Change 2012, 2(2):116-120.
- [71]Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt W, Schmidt G: Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 2006, 148:711-722.