期刊论文详细信息
BMC Evolutionary Biology
A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes)
Frank Hailer3  Carsten Nowak5  Katharina Steyer5  Timm Haun3  Alexander A Sokolov1  Nuria Selva6  Axel Janke2  Nicolas Lecomte4  Verena E Kutschera3 
[1] Ecological Research Station of the Institute of Plant and Animal Ecology, Russian Academy of Sciences, Labytnangi, 629400, Russia;Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13,60438 Frankfurt am Main, Germany;Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany;Department of Environment, Government of Nunavut, X0A0L0 Igloolik, Canada;Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571 Gelnhausen, Germany;Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
关键词: Vulpes;    Phylogeography;    mtDNA control region;    Generalist;    Divergence time estimate;    Carnivores;   
Others  :  1087204
DOI  :  10.1186/1471-2148-13-114
 received in 2013-02-01, accepted in 2013-05-29,  发布年份 2013
PDF
【 摘 要 】

Background

Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass.

Results

Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene.

Conclusions

The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan’s northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories.

【 授权许可】

   
2013 Kutschera et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023801293.pdf 1164KB PDF download
Figure 4. 87KB Image download
Figure 3. 74KB Image download
Figure 2. 64KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Paetkau D, Amstrup SC, Born EW, Calvert W, Derocher AE, Garner GW, Messier F, Stirling I, Taylor MK, Wiig Ø, Strobeck C: Genetic structure of the world’s polar bear populations. Mol Ecol 1999, 8:1571-1584.
  • [2]Dalén L, Fuglei E, Hersteinsson P, Kapel CMO, Roth JD, Samelius G, Tannerfeldt M, Angerbjörn A: Population history and genetic structure of a circumpolar species: the arctic fox. Biol J Linn Soc 2005, 84:79-89.
  • [3]Wooding S, Ward R: Phylogeography and pleistocene evolution in the North American black bear. Mol Biol Evol 1997, 14:1096-1105.
  • [4]Seddon JM, Santucci F, Reeve NJ, Hewitt GM: DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor: Pleistocene refugia, postglacial expansion and colonization routes. Mol Ecol 2001, 10:2187-2198.
  • [5]Niedziałkowska M, Jędrzejewska B, Honnen A-C, Otto T, Sidorovich VE, Perzanowski K, Skog A, Hartl GB, Borowik T, Bunevich AN, Lang J, Zachos FE: Molecular biogeography of red deer Cervus elaphus from eastern Europe: insights from mitochondrial DNA sequences. Acta Theriol 2011, 56:1-12.
  • [6]Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F: Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 1998, 7:453-464.
  • [7]Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000, 405:907-913.
  • [8]Vilà C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, Crandall KA, Ellegren H, Wayne RK: Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 1999, 8:2089-2103.
  • [9]Sharma DK, Maldonado JE, Jhala YV, Fleischer RC: Ancient wolf lineages in India. P R Soc B 2004, 271:S1-S4.
  • [10]Valdiosera CE, García N, Anderung C, Dalén L, Crégut-Bonnoure E, Kahlke R-D, Stiller M, Brandström M, Thomas MG, Arsuaga JL, Götherström A, Barnes I: Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Mol Ecol 2007, 16:5140-5148.
  • [11]Calvignac S, Hughes S, Hänni C: Genetic diversity of endangered brown bear (Ursus arctos) populations at the crossroads of Europe, Asia and Africa. Divers Distrib 2009, 15:742-750.
  • [12]Muñoz-Fuentes V, Darimont CT, Wayne RK, Paquet PC, Leonard JA: Ecological factors drive differentiation in wolves from British Columbia. J Biogeogr 2009, 36:1516-1531.
  • [13]Davison J, Ho SYW, Bray SC, Korsten M, Tammeleht E, Hindrikson M, Østbye K, Østbye E, Lauritzen S-E, Austin J, Cooper A, Saarma U: Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Q Sci Rev 2011, 30:418-430.
  • [14]Edwards CJ, Suchard MA, Lemey P, Welch JJ, Barnes I, Fulton TL, Barnett R, O’Connell TC, Coxon P, Monaghan N, Valdiosera CE, Lorenzen ED, Willerslev E, Baryshnikov GF, Rambaut A, Thomas MG, Bradley DG, Shapiro B: Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline. Curr Biol 2011, 21:1251-1258.
  • [15]Weckworth BV, Dawson NG, Talbot SL, Flamme MJ, Cook JA: Going Coastal: Shared Evolutionary History between Coastal British Columbia and Southeast Alaska Wolves (Canis lupus). PLoS One 2011, 6:e19582.
  • [16]Larivière S, Pasitschniak-Arts M: Vulpes vulpes. Mamm Species 1996, 537:1-11.
  • [17]Sommer R, Benecke N: Late-Pleistocene and early Holocene history of the canid fauna of Europe (Canidae). Mamm Biol 2005, 70:227-241.
  • [18]Voigt DR: Red fox. In Wild furbearer management and conservation in North America. Edited by Novák M, Baker JA, Obbard ME, Malloch B. Toronto: Ontario Ministry of Natural Resources; 1987:379-382.
  • [19]Goszczynski J: Population dynamics of the red fox in central Poland. Acta Theriol 1989, 34:141-154.
  • [20]Allen SH, Sargeant AB: Dispersal Patterns of Red Foxes Relative to Population Density. J Wildl Manage 1993, 57:526-533.
  • [21]Inoue T, Nonaka N, Mizuno A, Morishima Y, Sato H, Katakura K, Oku Y: Mitochondrial DNA Phylogeography of the Red Fox (Vulpes vulpes) in Northern Japan. Zool Sci 2007, 24:1178-1186.
  • [22]Kirschning J, Zachos FE, Cirovic D, Radovic IT, Hmwe SS, Hartl GB: Population Genetic Analysis of Serbian Red Foxes (Vulpes vulpes) by Means of Mitochondrial Control Region Sequences. Biochem Genet 2007, 45:409-420.
  • [23]Aubry KB, Statham MJ, Sacks BN, Perrine JD, Wisely SM: Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Mol Ecol 2009, 18:2668-2686.
  • [24]Sacks BN, Statham MJ, Perrine JD, Wisely SM, Aubry KB: North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox. Conserv Genet 2010, 11:1523-1539.
  • [25]Teacher AG, Thomas JA, Barnes I: Modern and ancient red fox (Vulpes vulpes) in Europe show an unusual lack of geographical and temporal structuring, and differing responses within the carnivores to historical climatic change. BMC Evol Biol 2011, 11:214. BioMed Central Full Text
  • [26]Edwards CJ, Soulsbury CD, Statham MJ, Ho SYW, Wall D, Dolf G, Iossa G, Baker PJ, Harris S, Sacks BN, Bradley DG: Temporal genetic variation of the red fox, Vulpes vulpes, across western Europe and the British Isles. Q Sci Rev 2012, 57:95-104.
  • [27]Statham MJ, Sacks BN, Aubry KB, Perrine JD, Wisely SM: The origin of recently established red fox populations in the United States: translocations or natural range expansions? J Mammal 2012, 93:52-65.
  • [28]Valière N, Fumagalli L, Gielly L, Miquel C, Lequette B, Poulle M-L, Weber J-M, Arlettaz R, Taberlet P: Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Anim Conserv 2003, 6:83-92.
  • [29]Yu J-N, Han S-H, Kim B-H, Kryukov AP, Kim S, Lee B-Y, Kwak M: Insights into Korean Red Fox (Vulpes vulpes) Based on Mitochondrial Cytochrome b Sequence Variation in East Asia. Zool Sci 2012, 29:753-760.
  • [30]Kurtén B: Pleistocene Mammals of Europe. Chicago, Illinois: Aldine Transaction; 1968.
  • [31]Wayne RK, Van Valkenburgh B, O’Brien SJ: Molecular distance and divergence time in carnivores and primates. Mol Biol Evol 1991, 8:297-319.
  • [32]Ho SYW, Phillips MJ, Cooper A, Drummond AJ: Time Dependency of Molecular Rate Estimates and Systematic Overestimation of Recent Divergence Times. Mol Biol Evol 2005, 22:1561-1568.
  • [33]Saarma U, Ho SYW, Pybus OG, Kaljuste M, Tumanov IL, Kojola I, Vorobiev AA, Markov NI, Saveljev AP, Valdmann H, Lyapunova EA, Abramov AV, Männil P, Korsten M, Vulla E, Pazetnov SV, Pazetnov VS, Putchkovskiy SV, Rõkov AM: Mitogenetic structure of brown bears (Ursus arctos L.) in northeastern Europe and a new time frame for the formation of European brown bear lineages. Mol Ecol 2007, 16:401-413.
  • [34]Leonard JA, Vilà C, Wayne RK: Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus). Mol Ecol 2005, 14:9-17.
  • [35]Ramos-Onsins SE, Rozas J: Statistical Properties of New Neutrality Tests Against Population Growth. Mol Biol Evol 2002, 19:2092-2100.
  • [36]Pilot M, Jedrzejewski W, Branicki W, Sidorovich VE, Jedrzejewska B, Stachura K, Funk SM: Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 2006, 15:4533-4553.
  • [37]Kurtén B, Anderson E: Pleistocene Mammals of North America. North America: Columbia University Press; 1980.
  • [38]Hoffecker JF, Elias SA: The Human Ecology of Beringia. New York: Columbia University Press; 2007.
  • [39]Péwé TL, Hopkins DM: Mammal Remains of Pre-Wisconsin Age in Alaska. California: University Press; 1967.
  • [40]Péwé TL: Quaternary Geology of Alaska. Washington, DC: US Government Printing Office; 1975. [Geological Survey Professional Paper no 835]
  • [41]Harington CR: Pleistocene vertebrates of the Yukon Territory. University of Alberta; 1977. [Dissertation]
  • [42]FAUNMAP Working Group: FAUNMAP: a database documenting late Quaternary distributions of mammal species in the United States. Illinois State Museum Scientific Papers 1994, 25:1-690.
  • [43]McKay BD: A new timeframe for the diversification of Japan’s mammals. J Biogeogr 2011, 39:1134-1143.
  • [44]Blakiston T: Zoological indications of ancient connection of the Japan Islands with the continent. Trans Asiatic Soc Japan 1883, 11:126-140.
  • [45]Ding Q-L, Wang C-C, Farina SE, Li H: Mapping Human Genetic Diversity on the Japanese Archipelago. Adv Anthropol 2011, 1:19-25.
  • [46]Kawamura Y: Last glacial and Holocene land mammals of the Japanese islands: their fauna, extinction and immigration. Q Res 2007, 46:171-177.
  • [47]Hersteinsson P, MacDonald DW: Interspecific Competition and the Geographical Distribution of Red and Arctic Foxes Vulpes vulpes and Alopex lagopus. Oikos 1992, 64:505-515.
  • [48]Frati F, Hartl GB, Lovari S, Delibes M, Markov G: Quaternary radiation and genetic structure of the red fox Vulpes vulpes in the Mediterranean Basin, as revealed by allozymes and mitochondrial DNA. J Zool 1998, 245:43-51.
  • [49]Tannerfeldt M, Elmhagen B, Angerbjörn A: Exclusion by interference competition? The relationship between red and arctic foxes. Oecologia 2002, 132:213-220.
  • [50]Killengreen ST, Lecomte N, Ehrich D, Schott T, Yoccoz NG, Ims RA: The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra. J Anim Ecol 2011, 80:1049-1060.
  • [51]Rodnikova A, Ims RA, Sokolov AA, Skogstad G, Sokolov V, Shtro V, Fuglei E: Red fox takeover of arctic fox breeding den: an observation from Yamal Peninsula, Russia. Polar Biol 2011, 34:1609-1614.
  • [52]Robinson NA, Marks CA: Genetic structure and dispersal of red foxes (Vulpes vulpes) in urban Melbourne. Aust J Zool 2001, 49:589-601.
  • [53]Wandeler P, Funk SM, Largiadèr CR, Gloor S, Breitenmoser U: The city-fox phenomenon: genetic consequences of a recent colonization of urban habitat. Mol Ecol 2003, 12:647-656.
  • [54]Oishi T, Uraguchi K, Takahashi K, Masuda R: Population Structures of the Red Fox (Vulpes vulpes) on the Hokkaido Island, Japan, Revealed by Microsatellite Analysis. J Hered 2011, 102:38-46.
  • [55]Korsten M, Ho SYW, Davison J, Pähn B, Vulla E, Roht M, Tumanov IL, Kojola I, Andersone-Lilley Z, Ozolins J, Pilot M, Mertzanis Y, Giannakopoulos A, Vorobiev AA, Markov NI, Saveljev AP, Lyapunova EA, Abramov AV, Männil P, Valdmann H, Pazetnov SV, Pazetnov VS, Rõkov AM, Saarma U: Sudden expansion of a single brown bear maternal lineage across northern continental Eurasia after the last ice age: a general demographic model for mammals? Mol Ecol 2009, 18:1963-1979.
  • [56]Matsuhashi T, Masuda R, Mano T, Murata K, Aiurzaniin A: Phylogenetic Relationships among Worldwide Populations of the Brown Bear Ursus arctos. Zool Sci 2001, 18:1137-1143.
  • [57]Pilot M, Jędrzejewski W, Sidorovich VE, Meier-Augenstein W, Hoelzel AR: Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore. PLoS One 2012, 7:e39341.
  • [58]Björnerfeldt S, Webster MT, Vilà C: Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res 2006, 16:990-994.
  • [59]Lindqvist C, Schuster SC, Sun Y, Talbot SL, Qi J, Ratan A, Tomsho LP, Kasson L, Zeyl E, Aars J, Miller W, Ingólfsson Ó, Bachmann L, Wiig Ø: Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc Natl Acad Sci USA 2010, 107:5053-5057.
  • [60]Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Nielsen SCA, Rasmussen M, Willerslev E, Gilbert MTP, Harkins T: Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 2010, 20:908-916.
  • [61]Rutledge LY, Patterson BR, White BN: Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes. BMC Evol Biol 2010, 10:215. BioMed Central Full Text
  • [62]Keis M, Remm J, Ho SYW, Davison J, Tammeleht E, Tumanov IL, Saveljev AP, Männil P, Kojola I, Abramov AV, Margus T, Saarma U: Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographical structure and migration patterns among brown bears in north-western Eurasia. J Biogeogr 2013, 40:915-927.
  • [63]McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT: Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 2013, 66:526-538.
  • [64]Hellborg L, Gündüz İ, Jaarola M: Analysis of sex-linked sequences supports a new mammal species in Europe. Mol Ecol 2005, 14:2025-2031.
  • [65]Hailer F, Kutschera VE, Hallstrom BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A: Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science 2012, 336:344-347.
  • [66]Nadachowska-Brzyska K, Zieliński P, Radwan J, Babik W: Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol Ecol 2012, 21:887-906.
  • [67]Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, Väinölä R: Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol 2006, 41:345-354.
  • [68]Okumura N, Ishiguro N, Nakano M, Matsui A, Sahara M: Intra- and interbreed genetic variations of mitochondrial DNA major non-coding regions in Japanese native dog breeds (Canis familiaris). Anim Genet 1996, 27:397-405.
  • [69]Statham MJ, Turner PD, O’Reilly C: Use of PCR amplification and restriction enzyme digestion of mitochondrial D-loop for identification of mustelids in Ireland. Ir Nat J 2005, 28:1-6.
  • [70]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:564-567.
  • [71]Fu Y-X: Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147:915-925.
  • [72]Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992, 9:552-569.
  • [73]Rogers AR: Genetic Evidence for a Pleistocene Population Explosion. Evolution 1995, 49:608-615.
  • [74]Schenekar T, Weiss S: High rate of calculation errors in mismatch distribution analysis results in numerous false inferences of biological importance. Heredity 2011, 107:511-512.
  • [75]Lloyd HG: The Red Fox. London: Batsford; 1980.
  • [76]Schneider S, Excoffier L: Estimation of Past Demographic Parameters From the Distribution of Pairwise Differences When the Mutation Rates Vary Among Sites: Application to Human Mitochondrial DNA. Genetics 1999, 152:1079-1089.
  • [77]Bandelt HJ, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [78]Posada D: jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [79]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
  • [80]Perini FA, Russo CAM, Schrago CG: The evolution of South American endemic canids: a history of rapid diversification and morphological parallelism. J Evol Biol 2010, 23:311-322.
  • [81]Nyakatura K, Bininda-Emonds OR: Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 2012, 10:12. BioMed Central Full Text
  • [82]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst Biol 2012, 61:539-542.
  • [83]Gelman A, Rubin DB: Inference from Iterative Simulation Using Multiple Sequences. Stat Sci 1992, 7:457-472.
  • [84]IUCN (International Union for Conservation of Nature): Vulpes vulpes. IUCN 2011 IUCN Red List of Threatened Species Version 20121 2008.
  文献评价指标  
  下载次数:15次 浏览次数:11次