期刊论文详细信息
BMC Research Notes
Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex
Sergio Lanteri2  Steven J Knapp1  Rosario Mauro3  Giovanni Mauromicale3  Alberto Acquadro2  Davide Scaglione2  Ezio Portis2 
[1] Monsanto Company, Woodland, CA, USA;Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, I-10095, Grugliasco, Torino, Italy;Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA) – sez. Scienze Agronomiche, University of Catania, via Valdisavoia 5, I-95123, Catania, Italy
关键词: Earliness;    QTL;    Microsatellite;    Linkage map;    Cynara cardunculus;   
Others  :  1166396
DOI  :  10.1186/1756-0500-5-252
 received in 2012-04-30, accepted in 2012-05-10,  发布年份 2012
PDF
【 摘 要 】

Background

The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach.

Results

A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance.

Conclusion

The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.

【 授权许可】

   
2012 Portis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416043854968.pdf 1740KB PDF download
Figure 6. 45KB Image download
Figure 5. 62KB Image download
Figure 4. 171KB Image download
Figure 3. 72KB Image download
Figure 2. 49KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Basnitzki J, Zohary D: Breeding of seed planted artichoke. Plant Breeding Reviews 1994, 12:253-269.
  • [2]Schutz K, Kammerer D, Carle R, Schieber A: Identification and quantification of caffeoylquinic acids and flavonolds from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn. Journal of Agricultural and Food Chemistry 2004, 52(13):4090-4096.
  • [3]Lombardo S, Pandino G, Mauromicale G, Knödler M, Carle R, Schieber M: Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori]. Food Chemistry 2010, 119:1175-1181.
  • [4]Pandino G, Courts F, Lombardo S, Mauromicale G, Williamson G: Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. Journal of Agricultural and Food Chemistry 2010, 58:1026-1031.
  • [5]Pandino G, Lombardo S, Mauromicale G, Williamson G: Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chemistry 2011, 126:417-422.
  • [6]Lattanzio V, Kroon PA, Linsalata V, Cardinali A: Globe artichoke: a functional food and source of nutraceutical ingredients. Journal of Functional Foods 2009, 1(2):131-144.
  • [7]Menin B, Comino C, Portis E, Moglia A, Cankar K, Bouwmeester H, Lanteri S, Beekwilder J: Genetic mapping characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Science 2012, 190:1-8.
  • [8]Cravotto G, Nano G, Binello A, Spagliardi P, Seu G: Chemical and biological modification of cynaropicrin and grosheimin: a structure-bitterness relationship study. Journal of the Science of Food and Agriculture 2005, 85:1757-1764.
  • [9]Fritsche J, Beindorff C, Dachtler M, Zhang H, Lammers J: Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. European Food Research and Technology 2002, 215:149-157.
  • [10]Foti S, Mauromicale G, Raccuia S, Fallico B, Fanella F, Maccarone E: Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Industrial Crops and Products 1999, 10:219-228.
  • [11]Ierna A, Mauromicale G: Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass and Bioenergy 2010, 34:754-760.
  • [12]Encinar J, Gonzalez J, Rodriguez J, Tejedor A: Biodiesel fuels from vegetable oils: Transesterification of Cynara cardunculus L. oils with ethanol. Energy and Fuels 2002, 16(2):443-450.
  • [13]Acquadro A, Portis E, Longo A, Mauro R, Mauromicale G, Lanteri S: Potentiality of Cynara cardunculus L. as energy crop. Journal of Biotechnology 2010, 150:165-166.
  • [14]Acquadro A, Portis E, Scaglione D, Mauro RP, Campion B, Falavigna A, Zaccardelli R, Ronga D, Perrone D, Mauromicale G, et al.: Cynara cardunculus L.: From Vegetable to Energy Crop. In Proceedings of the Joint Meeting AGI-SIBV-SIGA. Società Italiana di Genetica Agraria (ed), ; 2011.
  • [15]Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E: A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theoretical and Applied Genetics 2006, 112(8):1532-1542.
  • [16]Acquadro A, Lanteri S, Scaglione D, Arens P, Vosman B, Portis E: Genetic mapping and annotation of genomic microsatellites isolated from globe artichoke. Theoretical and Applied Genetics 2009, 118:1573-1587.
  • [17]Portis E, Mauromicale G, Mauro R, Acquadro A, Scaglione D, Lanteri S: Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theoretical and Applied Genetics 2009, 120:59-70.
  • [18]Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E: The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biology 2009, 9:30. BioMed Central Full Text
  • [19]Menin B, Comino C, Moglia A, Dolzhenko Y, Portis E, Lanteri S: Identification and mapping of genes related to caffeoylquinic acid synthesis in Cynara cardunculus L. Plant Science 2010, 179(4):338-347.
  • [20]Lanteri S, Portis E, Acquadro A, Mauro RP, Mauromicale G: Morphology and SSR fingerprinting of newly developed Cynara cardunculus genotypes exploitable as ornamentals. Euphytica 2012, 184:311-321.
  • [21]Sonnante G, Gatto A, Morgese A, Montemurro F, Sarli G, Blanco E, Pignone D: Genetic map of artichoke x wild cardoon: toward a consensus map for Cynara cardunculus. Theoretical and Applied Genetics 2011, 123(7):1215-1229.
  • [22]Scaglione D, Acquadro A, Portis E, Taylor C, Lanteri S, Knapp S: Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database. BMC Genomics 2009, 10:454. BioMed Central Full Text
  • [23]Lorieux M, Goffinet B, Perrier X, Deleon D, Lanaud C: Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical and Applied Genetics 1995, 90:73-80.
  • [24]Lorieux M, Perrier X, Goffinet B, Lanaud C, Deleon D: Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theoretical and Applied Genetics 1995, 90:81-89.
  • [25]Bradshaw H, Villar M, Watson B, Otto K, Stewart S, Stettler R: Molecular genetics of growth and development in Populus. 3. A genetic-linkage map of a hybrid poplar composed of RFLP, STS and RAPD markers. Theoretical and Applied Genetics 1994, 89(2–3):167-178.
  • [26]Pekkinen M, Varvio S, Kulju K, Karkkainen H, Smolander S, Vihera-Aarnio A, Koski V, Sillanpaa M: Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms. Genome 2005, 48(4):619-625.
  • [27]Rodzen J, May B: Inheritance of microsatellite loci in the white sturgeon (Acipenser transmontanus). Genome 2002, 45:1064-1076.
  • [28]Shaw P, Turan C, Wright J, O'Connell M, Carvalho G: Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 1999, 83:490-499.
  • [29]Van Oosterhout C, Hutchinson W, Wills D, Shipley P: MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 2004, 4:535-538.
  • [30]Arens P, Odinot P, Vanheusden A, Lindhout P, Vosman B: GATA repeats and GACA repeats are not evenly distributed throughout the tomato genome. Genome 1995, 38(1):84-90.
  • [31]Bhattramakki D, Dong J, Chhabra A, Hart G: An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 2000, 43(6):988-1002.
  • [32]Gill G, Wilcox P, Whittaker D, Winz R, Bickerstaff P, Echt C, Kent J, Humphreys M, Elborough K, Gardner R: A framework linkage map of perennial ryegrass based on SSR markers. Genome 2006, 49(4):354-364.
  • [33]Jones E, Dupal M, Dumsday J, Hughes L, Forster J: An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 2002, 105(4):577-584.
  • [34]McCouch S, Teytelman L, Xu Y, Lobos K, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, et al.: Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 2002, 9(6):199-207.
  • [35]Ramsay L, Macaulay M, Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, et al.: A simple sequence repeat-based linkage map of barley. Genetics 2000, 156(4):1997-2005.
  • [36]Fishman L, Kelly AJ, Morgan E, Willis JH: A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 2001, 159(4):1701-1716.
  • [37]Lyttle T: The Genetics and Evolutionary Biology of Meiotic Drive - Preface. American Naturalist 1991, 137(3):281-282.
  • [38]Xu Y, Zhu L, Xiao J, Huang N, McCouch S: Chromosomal regions associated with segregation distortion of molecular markers in F-2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L). Molecular and General Genetics 1997, 253:535-545.
  • [39]Faris J, Laddomada B, Gill B: Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 1998, 149:319-327.
  • [40]Lu H, Romero-Severson J, Bernardo R: Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics 2002, 105(4):622-628.
  • [41]Kleinhofs A, Kilian A, Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, et al.: A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theoretical and Applied Genetics 1993, 86(6):705-712.
  • [42]Ky C, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M: Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theoretical and Applied Genetics 2000, 101:669-676.
  • [43]Taylor D, Ingvarsson P: Common features of segregation distortion in plants and animals. Genetica 2003, 117:27-35.
  • [44]Lanteri S, Saba E, Cadinu M, Mallica G, Baghino L, Portis E: Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theoretical and Applied Genetics 2004, 108(8):1534-1544.
  • [45]Portis E, Barchi L, Acquadro A, Macua J, Lanteri S: Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breeding 2005, 124(3):299-304.
  • [46]Shao F, Merritt P, Bao Z, Innes R, Dixon J: A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 2002, 109(5):575-588.
  • [47]Penalver R, Duranvila N, Lopez MM: Characterization and pathogenicity of bacteria from shoot tips of the globe artichoke (Cynara-scolymus L). Annals of Applied Biology 1994, 125(3):501-513.
  • [48]Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM: A genetic analysis of seed and berry weight in grapevine. Genome 2006, 49(12):1572-1585.
  • [49]Marie D, Brown S: A cytometric exercise in plant DNA histograms, with 2 C-values for 70 species. Biology of the Cell 1993, 78(1–2):41-51.
  • [50]Melchinger AE, Utz HF, Schon GC: QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods. Euphytica 2004, 137(1):1-11.
  • [51]Cloutier S, Ragupathy R, Niu ZX, Duguid S: SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Molecular Breeding 2011, 28(4):437-451.
  • [52]Van Ooijen JW: JoinMap® v.4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands; 2006.
  • [53]Weeden N: Approaches to mapping in horticultural crops. In Gressho. PM (ed) Plant genome analysis. CRC Press Boca Raton, ; 1994:57-68.
  • [54]Kosambi D: The estimation of map distances from recombination values. In.Ann Eugen 1944, 12:172-175.
  • [55]Conesa A, Gotz S, Garcia-Gomez J, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [56]R: a language and environment for statistical computing Version 2.11.1. Vienna, Austria: R Foundation for Statistical Computing (ed), ; 2008. http://www.R-project.org webcite
  • [57]Lander ES, Botstein D: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121(1):185-199.
  • [58]Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C: MapQTL 4.0: software for the calculation of QTL positions on genetic maps. In Plant Research International. , Wageningen, The Netherlands; 2002.
  • [59]Jansen RC, Stam P: High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994, 136(4):1447-1455.
  • [60]Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. Genetics 1994, 138(3):963-971.
  • [61]Van Ooijen JW: Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics 1992, 84(7–8):803-811.
  • [62]Voorrips R: MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 2002, 93(1):77-78.
  • [63]Acquadro A, Portis E, Lanteri S: Isolation of microsatellite loci in artichoke (Cynara cardunculus L. var. scolymus). Molecular Ecology Notes 2003, 3(1):37-39.
  • [64]Acquadro A, Portis E, Lee D, Donini P, Lanteri S: Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 2005, 48(2):217-225.
  • [65]Acquadro A, Portis E, Albertini E, Lanteri S: M-AFLP-based protocol for microsatellite loci isolation in Cynara cardunculus L. (Asteraceae). Molecular Ecology Notes 2005, 5(2):272-274.
  • [66]Sonnante G, Carluccio A, De Paolis A, Pignone D: Identification of artichoke SSR markers: molecular variation and patterns of diversity in genetically cohesive taxa and wild allies. Genetic Resources and Crop Evolution 2008, 55(7):1029-1046.
  文献评价指标  
  下载次数:0次 浏览次数:9次