期刊论文详细信息
BMC Medical Genomics
Association of differential gene expression with imatinib mesylate and omacetaxine mepesuccinate toxicity in lymphoblastoid cell lines
Melanie A Carless1  John Blangero1  Greg R Collier2  Ken R Walder3  Shelley Cole1  Vincent Diego1  Harald H H Göring1  Hemant Kulkarni1 
[1] Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA;Barwon Biotechnology, Geelong, VIC, Australia;Deakin University, Geelong, VIC, Australia
关键词: Omacetaxine;    Imatinib;    Gene expression;    Toxicity;    Microarray;    Chronic myeloid leukemia;   
Others  :  1134715
DOI  :  10.1186/1755-8794-5-37
 received in 2012-03-22, accepted in 2012-08-16,  发布年份 2012
PDF
【 摘 要 】

Background

Imatinib mesylate is currently the drug of choice to treat chronic myeloid leukemia. However, patient resistance and cytotoxicity make secondary lines of treatment, such as omacetaxine mepesuccinate, a necessity. Given that drug cytotoxicity represents a major problem during treatment, it is essential to understand the biological pathways affected to better predict poor drug response and prioritize a treatment regime.

Methods

We conducted cell viability and gene expression assays to determine heritability and gene expression changes associated with imatinib and omacetaxine treatment of 55 non-cancerous lymphoblastoid cell lines, derived from 17 pedigrees. In total, 48,803 transcripts derived from Illumina Human WG-6 BeadChips were analyzed for each sample using SOLAR, whilst correcting for kinship structure.

Results

Cytotoxicity within cell lines was highly heritable following imatinib treatment (h2 = 0.60-0.73), but not omacetaxine treatment. Cell lines treated with an IC20 dose of imatinib or omacetaxine showed differential gene expression for 956 (1.96%) and 3,892 transcripts (7.97%), respectively; 395 of these (0.8%) were significantly influenced by both imatinib and omacetaxine treatment. k-means clustering and DAVID functional annotation showed expression changes in genes related to kinase binding and vacuole-related functions following imatinib treatment, whilst expression changes in genes related to cell division and apoptosis were evident following treatment with omacetaxine. The enrichment scores for these ontologies were very high (mostly >10).

Conclusions

Induction of gene expression changes related to different pathways following imatinib and omacetaxine treatment suggests that the cytotoxicity of such drugs may be differentially tolerated by individuals based on their genetic background.

【 授权许可】

   
2012 Kulkarni et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306044831283.pdf 865KB PDF download
Figure 4. 101KB Image download
Figure 3. 92KB Image download
20150218021102404.pdf 186KB PDF download
Figure 1. 107KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Santos FP, Quintas-Cardama A: New drugs for chronic myelogenous leukemia. Curr Hematol Malig Rep 2011, 6:96-103.
  • [2]Tang M, Gonen M, Quintas-Cardama A, Cortes J, Kantarjian H, Field C, Hughes TP, Branford S, Michor F: Dynamics of chronic myeloid leukemia response to long-term targeted therapy reveal treatment effects on leukemic stem cells. Blood 2011, 118:1622-1631.
  • [3]Quintas-Cardama A, Cortes J: Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009, 113:1619-1630.
  • [4]Deininger MW: Milestones and monitoring in patients with CML treated with imatinib. Hematology Am Soc Hematol Educ Program 2008, 2008:419-426.
  • [5]Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, Cervantes F, Deininger M, Gratwohl A, Guilhot F, et al.: Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 2009, 27:6041-6051.
  • [6]Saglio G, Baccarani M: First-line therapy for chronic myeloid leukemia: new horizons and an update. Clin Lymphoma Myeloma Leuk 2010, 10:169-176.
  • [7]Deininger M: Resistance and relapse with imatinib in CML: causes and consequences. J Natl Compr Canc Netw 2008, 6(Suppl 2):S11-S21.
  • [8]Jabbour E, Cortes J, Giles F, O'Brien S, Kantarjian H: The clinical challenge of imatinib resistance in chronic myeloid leukemia: emerging strategies with new targeted agents. Targ Oncol 2006, 1:186-196.
  • [9]Coude MM, Luycx O, Cariou ME, Maarek O, Dombret H, Cayuela JM, Rea D: Undetectable molecular residual disease after omacetaxine and nilotinib combination therapy in an imatinib-resistant chronic myeloid leukaemia patient harbouring the BCR-ABL1 T315I gatekeeper mutation. Br J Haematol 2012, 157:407-410.
  • [10]Kim TD, Frick M, le Coutre P: Omacetaxine mepesuccinate for the treatment of leukemia. Expert Opin Pharmacother 2011, 12:2381-2392.
  • [11]Allan EK, Holyoake TL, Craig AR, Jorgensen HG: Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia 2011, 25:985-994.
  • [12]Quintas-Cardama A, Cortes J: Omacetaxine mepesuccinate–a semisynthetic formulation of the natural antitumoral alkaloid homoharringtonine, for chronic myelocytic leukemia and other myeloid malignancies. IDrugs 2008, 11:356-372.
  • [13]Wetzler M, Segal D: Omacetaxine as an anticancer therapeutic: what is old is new again. Curr Pharm Des 2011, 17:59-64.
  • [14]Smith BD: Imatinib for chronic myeloid leukemia: the impact of its effectiveness and long-term side effects. J Natl Cancer Inst 2011, 103:527-529.
  • [15]Seiter K: Update of recent studies in chronic myeloid leukemia. J Hematol Oncol 2009, 2(Suppl 1):A2. BioMed Central Full Text
  • [16]Baran Y, Zencir S, Cakir Z, Ozturk E, Topcu Z: Imatinib-induced apoptosis: a possible link to topoisomerase enzyme inhibition. J Clin Pharm Ther 2011, 36:673-679.
  • [17]Liu XY, Yang YF, Wu CT, Xiao FJ, Zhang QW, Ma XN, Li QF, Yan J, Wang H, Wang LS: Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells. Biochem Biophys Res Commun 2010, 393:637-642.
  • [18]Shingu T, Fujiwara K, Bogler O, Akiyama Y, Moritake K, Shinojima N, Tamada Y, Yokoyama T, Kondo S: Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy 2009, 5:537-539.
  • [19]Shingu T, Fujiwara K, Bogler O, Akiyama Y, Moritake K, Shinojima N, Tamada Y, Yokoyama T, Kondo S: Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int J Cancer 2009, 124:1060-1071.
  • [20]Nemati F, Mathiot C, Grandjean I, Lantz O, Bordier V, Dewulf S, Ekue R, Di Santo JP, Poupon MF, Decaudin D: Imatinib mesylate reduces rituximab-induced tumor-growth inhibition in vivo on Epstein-Barr virus-associated human B-cell lymphoma. Anticancer drugs 2007, 18:1029-1037.
  • [21]Kuroda J, Kimura S, Strasser A, Andreeff M, O'Reilly LA, Ashihara E, Kamitsuji Y, Yokota A, Kawata E, Takeuchi M, et al.: Apoptosis-based dual molecular targeting by INNO-406, a second-generation Bcr-Abl inhibitor, and ABT-737, an inhibitor of antiapoptotic Bcl-2 proteins, against Bcr-Abl-positive leukemia. Cell Death Differ 2007, 14:1667-1677.
  • [22]Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC, Kimura S, Ottmann OG, Druker BJ, Villunger A, et al.: Bim and Bad mediate imatinib-induced killing of Bcr/Abl+leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci U S A 2006, 103:14907-14912.
  • [23]Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, Hixson JE, Henkel RD, Sharp RM, Comuzzie AG: Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation 1996, 94:2159-2170.
  • [24]Watters JW, Kraja A, Meucci MA, Province MA, McLeod HL: Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc Natl Acad Sci U S A 2004, 101:11809-11814.
  • [25]Sarma SN, Kim YJ, Ryu JC: Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds. Toxicology 2010, 271:122-130.
  • [26]Rojas M, Wright CW, Pina B, Portugal J: Genomewide expression profiling of cryptolepine-induced toxicity in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2008, 52:3844-3850.
  • [27]Hooyberghs J, Schoeters E, Lambrechts N, Nelissen I, Witters H, Schoeters G, Van Den Heuvel R: A cell-based in vitro alternative to identify skin sensitizers by gene expression. Toxicol Appl Pharmacol 2008, 231:103-111.
  • [28]Krishnaswamy R, Devaraj SN, Padma VV: Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and Cyclo-Oxygenase-2 expression. Free Radic Biol Med 2010, 49:50-60.
  • [29]Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JB, Abraham LJ, Rainwater DL, Comuzzie AG, et al.: Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007, 39:1208-1216.
  • [30]Newson R, Team AS: Software update: st0035_1: Multiple-test procedures and smile plots. Stata J 2010, 10:691-692.
  • [31]Alexandersson A: ellip. Stata Bulletin 2010, 46:gr32.
  • [32]Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998, 62:1198-1211.
  • [33]Ledet-Jensen CL, Ørntoft T: Normalization of real-time quantitative RT-PCR data: a model based variance estimation approach to identify genes suited for normalization – applied to bladder- and colon-cancer data-sets. Cancer Res 2004, 64:5245-5250.
  • [34]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001, 25:402-408.
  • [35]da Huang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007, 8:R183. BioMed Central Full Text
  • [36]da Huang W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA: DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007, 35:W169-175.
  • [37]Wang Y, Yang Z, Zhao X: Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells. Toxicol Mech Methods 2010, 20:234-241.
  • [38]Basciani S, Vona R, Matarrese P, Ascione B, Mariani S, Cauda R, Gnessi L, Malorni W, Straface E, Lucia MB: Imatinib interferes with survival of multi drug resistant Kaposi's sarcoma cells. FEBS Lett 2007, 581:5897-5903.
  • [39]dos Santos SC, Sa-Correia I: Genome-wide identification of genes required for yeast growth under imatinib stress: vacuolar H+−ATPase function is an important target of this anticancer drug. OMICS 2009, 13:185-198.
  • [40]Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A: JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 2011, 25:218-225.
  • [41]Grosso S, Puissant A, Dufies M, Colosetti P, Jacquel A, Lebrigand K, Barbry P, Deckert M, Cassuto JP, Mari B, Auberger P: Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated with resistance to BCR-ABL inhibitors. Mol Cancer Ther 2009, 8:1924-1933.
  • [42]Park ES, Shaughnessy JD Jr, Gupta S, Wang H, Lee JS, Woo HG, Zhan F, Owens JD Jr, Potter M, Janz S, Mushinski JF: Gene expression profiling reveals different pathways related to Abl and other genes that cooperate with c-Myc in a model of plasma cell neoplasia. BMC genomics 2007, 8:302. BioMed Central Full Text
  • [43]Ozturk K, Avcu F, Ugur Ural A: Aberrant expressions of leptin and adiponectin receptor isoforms in chronic myeloid leukemia patients. Cytokine 2012, 57:61-67.
  • [44]Alonci A, Allegra A, Russo S, Penna G, Bellomo G, D'Angelo A, Campo S, Cannavo A, Centorrino R, Musolino C: Imatinib mesylate therapy induces reduction in neutrophil gelatinase-associated lipocalin serum levels and increase in leptin concentrations in chronic myeloid leukemia patients in molecular remission. Acta Haematol 2012, 127:1-6.
  • [45]Eisele YS, Baumann M, Klebl B, Nordhammer C, Jucker M, Kilger E: Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol Biol Cell 2007, 18:3591-3600.
  • [46]Netzer WJ, Dou F, Cai D, Veach D, Jean S, Li Y, Bornmann WG, Clarkson B, Xu H, Greengard P: Gleevec inhibits beta-amyloid production but not Notch cleavage. Proc Natl Acad Sci U S A 2003, 100:12444-12449.
  • [47]Seggewiss R, Lore K, Greiner E, Magnusson MK, Price DA, Douek DC, Dunbar CE, Wiestner A: Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 2005, 105:2473-2479.
  • [48]Leguay T, Foucaud C, Parrens M, Fitoussi O, Bouabdallah K, Belaud-Rotureau MA, Tabrizi R, Marit G, Pigneux A, Milpied N: EBV-positive lymphoproliferative disease with medullary, splenic and hepatic infiltration after imatinib mesylate therapy for chronic myeloid leukemia. Leukemia 2007, 21:2208-2210.
  • [49]Bekkenk MW, Vermeer MH, Meijer CJ, Jansen PM, Middeldorp JM, Stevens SJ, Willemze R: EBV-positive cutaneous B-cell lymphoproliferative disease after imatinib mesylate. Blood 2003, 102:4243.
  • [50]Morey JS, Ryan JC, Van Dolah FM: Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biological Proced Online 2006, 8:175-193.
  文献评价指标  
  下载次数:1次 浏览次数:1次