期刊论文详细信息
BMC Complementary and Alternative Medicine
Chemical characterization and assessment of antioxidant potentiality of Streptocaulon sylvestre Wight, an endangered plant of sub-Himalayan plains of West Bengal and Sikkim
Tapas Kumar Chaudhuri1  Mousumi Poddar Sarkar2  Sandipan Ray2  Priyankar Dey1 
[1]Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Siliguri 734013, West Bengal, India
[2]Chemical Signal and Lipidomics Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
关键词: Streptocaulon;    Phenolic;    Lipid peroxidation;    Iron chelation;    HPLC;    Haemolytic;    GC-MS;    Free radical;    Flavonoid;    Antioxidant;   
Others  :  1172056
DOI  :  10.1186/s12906-015-0629-0
 received in 2014-11-26, accepted in 2015-03-23,  发布年份 2015
PDF
【 摘 要 】

Background

S. sylvestre Wright is an extremely rare plant, found only in the sub-Himalayan Terai region of West Bengal and neighboring Sikkim foot-hills. The plant has never been evaluated for any pharmaceutical properties. The phytochemical status of the plant is still unknown. Therefore, the aim of the study was to explore the antioxidant and free radical scavenging activities and analysis of bioactive compounds present in S. sylvestre.

Methods

S. sylvestre methanolic extract (SSME) was evaluated for different free radical scavenging activities such as hydroxyl radical, nitric oxide, singlet oxygen, hypochlorous acid, peroxynitrite, superoxide radical and hydrogen peroxide scavenging etc. Iron chelating capacity and inhibition of lipid peroxidation were studied in addition to the assessment of haemolytic activity and erythrocyte membrane stabilizing activity (EMSA). Chemical characterization of SSME were performed by high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS).

Results

The results indicate that SSME possess potent antioxidant activity with IC50 value of 113.06 ± 5.67 μg/ml, 63.93 ± 4.16 μg/ml and 142.14 ± 6.13 μg/ml for hydroxyl radical, superoxide radical and hypochlorous acid, respectively. HPLC analysis revealed presence of different phenolic secondary metabolites such as gallic acid, ferulic acid, p-coumaric acid, syringic acid, myricetin, quercetin etc. GC-MS analysis displayed the predominance of γ-sitosterol, vitamin E and squalene in SSME.

Conclusion

The present study provides a convincing evidence that S. sylvestre not only possess potent antioxidant activity but also can be used as a source of natural bioactive phytochemicals in the future.

【 授权许可】

   
2015 Dey et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150421012029747.pdf 2169KB PDF download
Figure 8. 41KB Image download
Figure 7. 18KB Image download
Figure 6. 27KB Image download
Figure 5. 60KB Image download
Figure 4. 62KB Image download
Figure 3. 57KB Image download
20150128174700295.pdf 211KB PDF download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Venter HJT, Verhoeven RL. Diversity and relationships within the Periplocoideae (Apocynaceae). Ann Mo Bot Gard. 2001; 88:550-568.
  • [2]The plant list [http://www.theplantlist.org/tpl1.1/search?q=Streptocaulon]. Accessed: 27.06.2014.
  • [3]Das AP. Rediscovery of Streptocaulon sylvestre Wight–an endangered and little known endemic plant of Eastern India. J Bombay Nat Hist Soc. 1996; 93:320-322.
  • [4]Sidney NC. A taxonomic revision of Finlaysonia and Streptocaulon (Periplocoideae; Apocynaceae). Department of Plant Sciences (Botany),University of the Free State, South Africa; 2012.
  • [5]Nguyen QV, Eun JB. Antioxidant activity of solvent extracts from Vietnamese medicinal plants. J Med Plant Res. 2011; 5:2798-2811.
  • [6]Jacinto SD, Ramos EF, Siguan APT, Canoy RJC. Determining the Antioxidant Property of Plant Extracts: A Laboratory Exercise. Asian J Biol Edu. 2011; 5:22-25.
  • [7]Ueda JY, Tezuka Y, Banskota AH, Le Tran Q, Tran QK, Harimaya Y et al.. Antiproliferative activity of Vietnamese medicinal plants. Biol Pharm Bull. 2002; 25:753-760.
  • [8]Han N, Yang J, Li L, Xiao B, Sha S, Tran L et al.. Inhibitory activity of a phytochemically characterized fraction from Streptocaulon juventas on lung cancer in nude mice. Planta Med. 2010; 76:561-565.
  • [9]Ueda JY, Tezuka Y, Banskota AH, Tran QL, Tran QK, Saiki I et al.. Constituents of the Vietnamese medicinal plant Streptocaulon juventas and their antiproliferative activity against the human HT-1080 fibrosarcoma cell line. J Nat Prod. 2003; 66:1427-1433.
  • [10]Xue R, Han N, Ye C, Wang HB, Yin J. Cardenolide glycosides from root of Streptocaulon juventas. Phytochemistry. 2013; 88:105-111.
  • [11]Xue R, Han N, Sakurai H, Saiki I, Ye C, Yin J. Cytotoxic cardiac glycosides from the roots of Streptocaulon juventas. Planta Med. 2013; 79:157-162.
  • [12]Ueda JY, Tezuka Y, Banskota AH, Tran QL, Tran QK, Saiki I et al.. Antiproliferative activity of cardenolides isolated from Streptocaulon juventas. Biol Pharm Bull. 2003; 26:1431-1435.
  • [13]Zhang L, Xu LZ, Yang SL. Two new cardenolides from the roots of Streptocaulon griffithii. J Asian Nat Prod Res. 2006; 8:613-617.
  • [14]Zhang XH, Zhu HL, Yu Q, Xuan LJ. Cytotoxic cardenolides from Streptocaulon griffithii. Chem Biodivers. 2007; 4:998-1002.
  • [15]Luan LJ, Wang YF, Zhang L, Wu YJ. Effect of griffithin on anticancer activity and apoptosis of cancer cells in vitro. Acta Pharm Sinic. 2007; 42:104-107.
  • [16]Rashan LJ, Franke K, Khine MM, Kelter G, Fiebig HH, Neumann J et al.. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol. 2011; 134:781-788.
  • [17]Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med. 1999; 26:1231-1237.
  • [18]Dey P, Chaudhuri D, Chaudhuri TK, Mandal N. Comparative assessment of the antioxidant activity and free radical scavenging potential of different parts of Nerium indicum. Int J Phytomed. 2012; 4:54-69.
  • [19]Kunchandy E, Rao MNA. Oxygen radical scavenging activity of curcumin. Int J Pharmaceut. 1990; 58:237-240.
  • [20]Garratt DC. The quantitative analysis of drugs. Chapman and Hall Ltd., Japan; 1964.
  • [21]Long LH, Evans PJ, Halliwell B. Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation. Biochem Biophys Res Commun. 1999; 262:605-609.
  • [22]Beckman JS, Chen H, Ischiropulos H, Crow JP. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994; 233:229-240.
  • [23]Bailly F, Zoete V, Vamecq J, Catteu JP, Bernier JL. Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against peroxynitrite-induced damage. FEBS Lett. 2000; 486:19-22.
  • [24]Aruoma OI, Halliwell B. Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase. Biochem J. 1987; 248:973-976.
  • [25]Oyaizu M. Studies on products of browning reactions: Antioxidant activities of products of browning reaction prepared from glucose amine. Jap J Nutr. 1986; 44:307-315.
  • [26]Kizil G, Kizil M, Yavuz M, Emen S, Hakimoglu F. Antioxidant activities of ethanol extracts of Hypericum triquetrifolium and Hypericum scabroides. Pharm Biol. 2008; 46:231-242.
  • [27]Haro-Vicente JF, Martinez-Gracia C, Ros G. Optimization of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chem. 2006; 98:639-648.
  • [28]Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999; 269:337-341.
  • [29]Concepcion Navarro M, Pilar Montilla M, Martin A, Jimenez J, Pilar Utrilla M. Free radical scavenger and antihepatotoxic activity of Rosmarinus tomentosus. Planta Med. 1993; 59:312-314.
  • [30]Kalaivani T, Rajasekaran C, Suthindhiran K, Mathew L. Free radical scavenging, cytotoxic, and Haemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan. J Food Sci. 2011; 76:T144-T149.
  • [31]Bligh EG, Dyer WJ. A rapid method for total lipid extraction and purification. Can J Biochem Physiol. 1959; 37:911-917.
  • [32]Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol. 2000; 71:23-43.
  • [33]Huang D, Ou B, Prio RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005; 53:1841-1856.
  • [34]Pokorny J. Are natural antioxidants better—and safer—than synthetic antioxidants. Eur J Lipid Sci Technol. 2007; 109:629-642.
  • [35]Wanasundara PKJPD, Shahidi F. Antioxidants: Science, Technology, and applications. Bailey’s Industrial Oil and Fat Products. Volume 6. Shahidi F, editor. John Wiley & Sons, Inc, USA; 1995.
  • [36]Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med. 2007; 43:477-503.
  • [37]Squadrito GL, Pryor WA. Mapping the reaction of peroxynitrite with CO2: energetics, reactive species, and biological implications. Chem Res Toxicol. 2002; 15:885-895.
  • [38]Albrich JM, McCarthy CA, Hurst JK. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A. 1981; 78:210-214.
  • [39]Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo. 1999; 13:295-309.
  • [40]Baskurt OK, Temiz A, Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med. 1998; 24:102-110.
  • [41]Hebbel RP, Eaton JW, Balasingam M, Steinberg MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982; 70:1253-1259.
  • [42]Assa Y, Shany S, Gestetner B, Tencer Y, Birk Y, Bondi A. Interaction of alfalfa saponins with components of the erythrocyte membrane in hemolysis. Biochim Biophys Acta. 1973; 307:83-91.
  • [43]Winter WP. Mechanism of saponin induced red cell hemolysis. Evidence for the involvement of aquaporin CHIP28. Blood. 1994; 84:1-10.
  • [44]Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002; 79:307-313.
  • [45]Kumar S, Prahalathan P, Raja B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: a dose-dependence study. Redox Rep. 2011; 16:208-215.
  • [46]Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem. 2002; 50:2161-2168.
  • [47]Zang LY, Cosma G, Gardner H, Shi X, Castranova V, Vallyathan V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am J Physiol Cell Physiol. 2000; 279:C954-C960.
  • [48]Gordon MH, Penman AR. Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids. 1998; 97:79-85.
  • [49]Liu Z, Li S, Han N, Sun D, Cao Y, Yin J. Studies on the chemical constituents of the vines of Streptocaulon juventas (Lour.) Merr. Asian J Tradit Med. 2008; 3:193-198.
  • [50]Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes. 2011; 3:29-37.
  • [51]Chaveerach A, Aungkapattamagul S, Tanee T, Noikotr K, Sudmoon R. Genetic verification and chemical contents identification of Allamanda species (Apocynaceae). Pak J Pharm Sci. 2014; 27:417-424.
  • [52]Amarowicz R. Squalene: A natural antioxidant? Eur J Lipid Sci Technol. 2009; 111:411-412.
  • [53]Dey P, Saha MR, Chowdhuri SR, Sen A, Sarkar MP, Haldar B et al.. Assessment of anti-diabetic activity of an ethnopharmacological plant Nerium oleander through alloxan induced diabetes in mice. J Ethnopharmacol. 2014; 161:128-137.
  • [54]Dey P, Saha MR, Sen A. An overview on Drug-Induced Hepatotoxicity. Asian J Pharm Clin Res. 2013; 6:1-4.
  文献评价指标  
  下载次数:74次 浏览次数:37次