期刊论文详细信息
BMC Microbiology
In the social amoeba Dictyostelium discoideum, density, not farming status, determines predatory success on unpalatable Escherichia coli
Joan E Strassmann1  David C Queller1  jeff smith1  Debra A Brock1  Susanne DiSalvo1 
[1] Department of Biology, Washington University in St. Louis, St. Louis 63130, Missouri, USA
关键词: Escherichia coli;    Dictyostelium discoideum;    Density dependency;    Predator–prey;    Allee effect;   
Others  :  1131217
DOI  :  10.1186/s12866-014-0328-x
 received in 2014-08-01, accepted in 2014-12-16,  发布年份 2014
PDF
【 摘 要 】

Background

The social amoeba Dictyostelium discoideum interacts with bacteria in a variety of ways. It is a predator of bacteria, can be infected or harmed by bacteria, and can form symbiotic associations with bacteria. Some clones of D. discoideum function as primitive farmers because they carry bacteria through the normally sterile D. discoideum social stage, then release them after dispersal so the bacteria can proliferate and be harvested. Some farmer-associated bacteria produce small molecules that promote host farmer growth but inhibit the growth of non-farmer competitors. To test whether the farmers’ tolerance is specific or extends to other growth inhibitory bacteria, we tested whether farmer and non-farmer amoebae are differentially affected by E. coli strains of varying pathogenicity. Because the numbers of each organism may influence the outcome of amoeba-bacteria interactions, we also examined the influence of amoeba and bacteria density on the ability of D. discoideum to grow and develop on distinct bacterial strains.

Results

A subset of E. coli strains did not support amoeba proliferation on rich medium, independent of whether the amoebae were farmers or non-farmers. However, amoebae could proliferate on these strains if amoebae numbers are high relative to bacteria numbers, but again there was no difference in this ability between farmer and non-farmer clones of D. discoideum.

Conclusions

Our results show that farmer and non-farmers did not differ in their abilities to consume novel strains of E. coli, suggesting that farmer resistance to their own carried bacteria does not extend to foreign bacteria. We see that increasing the numbers of bacteria or amoebae increases their respective likelihood of competitive victory over the other, thus showing Allee effects. We hypothesize that higher bacteria numbers may result in higher concentrations of a toxic product or in a reduction of resources critical for amoeba survival, producing an environment inhospitable to amoeba predators. Greater amoeba numbers may counter this growth inhibition, possibly through reducing bacterial numbers via increased predation rates, or by producing something that neutralizes a potentially toxic bacterial product.

【 授权许可】

   
2014 DiSalvo et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150301023050798.pdf 2015KB PDF download
Figure 5. 40KB Image download
Figure 4. 38KB Image download
Figure 3. 124KB Image download
Figure 2. 30KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kostic AD, Howitt MR, Garrett WS: Exploring host-microbiota interactions in animal models and humans. Genes Dev 2013, 27:701-18.
  • [2]Sekirov I, Russell SL, Antunes LC, Finlay BB: Gut microbiota in health and disease. Physiol Rev 2010, 90:859-904.
  • [3]Casadevall A, Pirofski LA: The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 2003, 1:17-24.
  • [4]Abraham C, Medzhitov R: Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 2011, 140:1729-37.
  • [5]Kessin RH: Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge University Press, Cambrige; 2000.
  • [6]Steinert M, Heuner K: Dictyostelium as host model for pathogenesis. Cell Microbiol 2005, 7:307-14.
  • [7]Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F: From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS One 2010, 5:e11882.
  • [8]Brock DA, Douglas TE, Queller DC, Strassmann JE: Primitive agriculture in a social amoeba. Nature 2011, 469:393-6.
  • [9]Bozzaro S, Eichinger L: The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011, 12:942-54.
  • [10]Smith J, Queller DC, Strassmann JE: Fruiting bodies of the social amoeba Dictyostelium discoideum increase spore transport by Drosophila. BMC Evol Biol 2014, 14:105. BioMed Central Full Text
  • [11]Strassmann JE, Queller DC: Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci U S A 2011, 108(Suppl 2):10855-62.
  • [12]Brock DA, Read S, Bozhchenko A, Queller DC, Strassmann JE: Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nat Commun 2013, 4:2385.
  • [13]Stallforth P, Brock DA, Cantley AM, Tian X, Queller DC, Strassmann JE, Clardy J: A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proc Natl Acad Sci U S A 2013, 110:14528-33.
  • [14]Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L: Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 2011, 13:1793-811.
  • [15]Alibaud L, Kohler T, Coudray A, Prigent-Combaret C, Bergeret E, Perrin J, Benghezal M, Reimmann C, Gauthier Y, van Delden C, et al.: Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cell Microbiol 2008, 10:729-40.
  • [16]Froquet R, Lelong E, Marchetti A, Cosson P: Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc 2009, 4:25-30.
  • [17]Darch SE, West SA, Winzer K, Diggle SP: Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci U S A 2012, 109:8259-63.
  • [18]Allee WCEAE, Park O, Part T, Schmidt KP: Principles of Animal Ecology. Saunders, Philadelphia, PA; 1949.
  • [19]Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, et al.: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2002, 99:17020-4.
  • [20]Hochhut B, Wilde C, Balling G, Middendorf B, Dobrindt U, Brzuszkiewicz E, Gottschalk G, Carniel E, Hacker J: Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol 2006, 61:584-95.
  • [21]Clermont O, Bonacorsi S, Bingen E: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000, 66:4555-8.
  • [22]Clermont O, Johnson JR, Menard M, Denamur E: Determination of Escherichia coli O types by allele-specific polymerase chain reaction: application to the O types involved in human septicemia. Diagn Microbiol Infect Dis 2007, 57:129-36.
  • [23]Bingen-Bidois M, Clermont O, Bonacorsi S, Terki M, Brahimi N, Loukil C, Barraud D, Bingen E: Phylogenetic analysis and prevalence of urosepsis strains of Escherichia coli bearing pathogenicity island-like domains. Infect Immun 2002, 70:3216-26.
  • [24]Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E: The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999, 67:546-53.
  • [25]Diard M, Baeriswyl S, Clermont O, Gouriou S, Picard B, Taddei F, Denamur E, Matic I: Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli. Microbes Infect 2007, 9:214-23.
  • [26]Brock DA, Read S, Bozhchenko A, Queller DC, Strassmann JE: Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nature Communications 2013, 4:2385.
  • [27]Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, Steinberg P, Kjelleberg S: Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One 2008, 3:e2744.
  • [28]Matz C, Bergfeld T, Rice SA, Kjelleberg S: Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 2004, 6:218-26.
  • [29]Hahn MW, Moore ER, Hofle MG: Role of microcolony formation in the Protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microb Ecol 2000, 39:175-85.
  • [30]Matz C, Kjelleberg S: Off the hook–how bacteria survive protozoan grazing. Trends Microbiol 2005, 13:302-7.
  • [31]Queck SY, Weitere M, Moreno AM, Rice SA, Kjelleberg S: The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. Environ Microbiol 2006, 8:1017-25.
  • [32]Friman VP, Diggle SP, Buckling A: Protist predation can favour cooperation within bacterial species. Biol Lett 2013, 9:20130548.
  • [33]Sperandio V, Torres AG, Giron JA, Kaper JB: Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2001, 183:5187-97.
  • [34]Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, et al.: FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 2008, 135:726-37.
  • [35]Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004, 2:95-108.
  • [36]Berec L, Angulo E, Courchamp F: Multiple Allee effects and population management. Trends Ecol Evol 2007, 22:185-91.
  • [37]Swift S, Downie JA, Whitehead NA, Barnard AM, Salmond GP, Williams P: Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 2001, 45:199-270.
  • [38]Kadam SV, Velicer GJ: Variable patterns of density-dependent survival in social bacteria. Behav Ecol 2006, 17:833-8.
  • [39]Hashimoto Y, Cohen MH, Robertson A: Cell density dependence of the aggregation characteristics of the cellular slime mould Dictyostelium discoideum. J Cell Sci 1975, 19:215-29.
  • [40]Johnson JR, Clermont O, Menard M, Kuskowski MA, Picard B, Denamur E: Experimental mouse lethality of Escherichia coli isolates, in relation to accessory traits, phylogenetic group, and ecological source. J Infect Dis 2006, 194:1141-50.
  文献评价指标  
  下载次数:78次 浏览次数:27次