期刊论文详细信息
BMC Genetics
Performance of HLA allele prediction methods in African Americans for class II genes HLA-DRB1, −DQB1, and –DPB1
Benjamin A Rybicki1  Courtney G Montgomery2  Paul McKeigue3  Sheri Trudeau1  Michael C Iannuzzi5  Indrani Datta4  Indra Adrianto2  Albert M Levin4 
[1] Department of Public Health Sciences, Henry Ford Health System, 1 Ford Place, 3E, 48202 Detroit, MI, USA;Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA;Public Health Sciences Section, University of Edinburgh Medical School, Edinburgh, Scotland;Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA;Department of Medicine, Upstate Medical University, Syracuse, NY, USA
关键词: Admixture;    Imputation;    Single nucleotide polymorphisms;    African American;    HLA;   
Others  :  866435
DOI  :  10.1186/1471-2156-15-72
 received in 2013-12-10, accepted in 2014-06-11,  发布年份 2014
PDF
【 摘 要 】

Background

The expense of human leukocyte antigen (HLA) allele genotyping has motivated the development of imputation methods that use dense single nucleotide polymorphism (SNP) genotype data and the region’s haplotype structure, but the performance of these methods in admixed populations (such as African Americans) has not been adequately evaluated. We compared genotype-based—derived from both genome-wide genotyping and targeted sequencing—imputation results to existing allele data for HLA–DRB1, −DQB1, and –DPB1.

Results

In European Americans, the newly-developed HLA Genotype Imputation with Attribute Bagging (HIBAG) method outperformed HLA*IMP:02. In African Americans, HLA*IMP:02 performed marginally better than HIBAG pre-built models, but HIBAG models constructed using a portion of our African American sample with both SNP genotyping and four-digit HLA class II allele typing had consistently higher accuracy than HLA*IMP:02. However, HIBAG was significantly less accurate in individuals heterozygous for local ancestry (p ≤0.04). Accuracy improved in models with equal numbers of African and European chromosomes. Variants added by targeted sequencing and SNP imputation further improved both imputation accuracy and the proportion of high quality calls.

Conclusion

Combining the HIBAG approach with local ancestry and dense variant data can produce highly-accurate HLA class II allele imputation in African Americans.

【 授权许可】

   
2014 Levin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727073024105.pdf 304KB PDF download
40KB Image download
【 图 表 】

【 参考文献 】
  • [1]The MHC sequencing consortium: Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401(6756):921-923.
  • [2]Dupont B: Nomenclature for factors of the HLA system, 1987. Decisions of the Nomenclature Committee on Leukocyte Antigens, which met in New York on November 21–23, 1987. Hum Immunol 1989, 26(1):3-14.
  • [3]de Bakker PI, Raychaudhuri S: Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet 2012, 21(R1):R29-R36.
  • [4]Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Fernandez-Vina M, Geraghty DE, Holdsworth R, Hurley CK, Lau M, Lee KW, Mach B, Maiers M, Mayr WR, Muller CR, Parham P, Petersdorf EW, Sasazuki T, Strominger JL, Svejgaard A, Terasaki PI, Tiercy JM, Trowsdale J: Nomenclature for factors of the HLA system, 2010. Tissue Antigens 2010, 75(4):291-455.
  • [5]Trowsdale J, Knight JC: Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 2013, 14:301-323.
  • [6]de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X, Monsuur AJ, Whittaker P, Delgado M, Morrison J, Richardson A, Walsh EC, Gao X, Galver L, Hart J, Hafler DA, Pericak-Vance M, Todd JA, Daly MJ, Trowsdale J, Wijmenga C, Vyse TJ, Beck S, Murray SS, Carrington M, Gregory S, Deloukas P, Rioux JD: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006, 38(10):1166-1172.
  • [7]Leslie S, Donnelly P, McVean G: A statistical method for predicting classical HLA alleles from SNP data. Am J Hum Genet 2008, 82(1):48-56.
  • [8]Dilthey AT, Moutsianas L, Leslie S, McVean G: HLA*IMP–an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 2011, 27(7):968-972.
  • [9]Xie M, Li J, Jiang T: Accurate HLA type inference using a weighted similarity graph. BMC Bioinformatics 2010, 11(Suppl 11):S10.
  • [10]Setty MN, Gusev A, Pe’er I: HLA type inference via haplotypes identical by descent. J Comput Biol 2011, 18(3):483-493.
  • [11]Li SS, Wang H, Smith A, Zhang B, Zhang XC, Schoch G, Geraghty D, Hansen JA, Zhao LP: Predicting multiallelic genes using unphased and flanking single nucleotide polymorphisms. Genet Epidemiol 2011, 35(2):85-92.
  • [12]Browning BL, Browning SR: A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009, 84(2):210-223.
  • [13]Dilthey A, Leslie S, Moutsianas L, Shen J, Cox C, Nelson MR, McVean G: Multi-population classical HLA type imputation. PLoS Comput Biol 2013, 9(2):e1002877.
  • [14]Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, Alfredsson L, Padyukov L, Klareskog L, Worthington J, Siminovitch KA, Bae SC, Plenge RM, Gregersen PK, de Bakker PI: Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012, 44(3):291-296.
  • [15]Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476(7359):214-219.
  • [16]Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, Weir BS: HIBAG – HLA Genotype Imputation with Attribute Bagging. Pharmacogenomics J 2014, 14(2):192-200.
  • [17]Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R, Adler A, Kelly JA, Kaufman KM, Lessard CJ, Moser KL, Kimberly RP, Harley JB, Iannuzzi MC, Rybicki BA, Montgomery CG: Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One 2012, 7(8):e43907.
  • [18]Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA, Pandey JP, Newman LS, Magira E, Beznik-Cizman B, Monos D: HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003, 73(4):720-735.
  • [19]Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, Beaty TH, Mathias R, Reich D, Myers S: Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet 2009, 5(6):e1000519.
  • [20]Sankararaman S, Kimmel G, Halperin E, Jordan MI: On the inference of ancestries in admixed populations. Genome Res 2008, 18(4):668-675.
  • [21]Levin AM, Iannuzzi MC, Montgomery CG, Trudeau S, Datta I, Adrianto I, Chitale DA, McKeigue P, Rybicki BA: Admixture Fine-Mapping in African Americans Implicates XAF1 as a Possible Sarcoidosis Risk Gene. PLoS One 2014, 9(3):e92646.
  • [22]ACCESS Research Group: Design of a case control etiologic study of sarcoidosis (ACCESS). J Clin Epidemiol 1999, 52:1173-1186.
  • [23]Rybicki BA, Hirst K, Iyengar SK, Barnard JG, Judson MA, Rose CS, Donohue JF, Kavuru MS, Rabin DL, Rossman MD, Baughman RP, Elston RC, Maliarik MJ, Moller DR, Newman LS, Teirstein AS, Iannuzzi MC: A sarcoidosis genetic linkage consortium: the sarcoidosis genetic analysis (SAGA) study. Sarcoidosis Vasc Diffuse Lung Dis 2005, 22(2):115-122.
  • [24]Iannuzzi MC, Maliarik MJ, Poisson LM, Rybicki BA: Sarcoidosis susceptibility and resistance HLA-DQB1 alleles in African Americans. Am J Respir Crit Care Med 2003, 167(9):1225-1231.
  • [25]Rasmussen A, Sevier S, Kelly JA, Glenn SB, Aberle T, Cooney CM, Grether A, James E, Ning J, Tesiram J, Morrisey J, Powe T, Drexel M, Daniel W, Namjou B, Ojwang JO, Nguyen KL, Cavett JW, Te JL, James JA, Scofield RH, Moser K, Gilkeson GS, Kamen DL, Carson CW, Quintero-del-Rio AI, del Carmen Ballesteros M, Punaro MG, Karp DR: The lupus family registry and repository. Rheumatology (Oxford) 2011, 50(1):47-59.
  • [26]Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, Holt RA: Derivation of HLA types from shotgun sequence datasets. Genome Med 2012, 4(12):95.
  • [27]Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, Gupta N, DePristo MA, Henn MR, Lennon NJ, de Bakker PI: Next-generation sequencing for HLA typing of class I loci. BMC Genomics 2011, 12:42.
  • [28]Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491(7422):56-65.
  • [29]Hughes AR, Brothers CH, Mosteller M, Spreen WR, Burns DK: Genetic association studies to detect adverse drug reactions: abacavir hypersensitivity as an example. Pharmacogenomics 2009, 10(2):225-33.
  • [30]Hope LR, Korb KB: Bayesian Information Reward. London UK: AI '02 Proceedings of the 15th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence; 2002:272-283.
  • [31]Tekola Ayele F, Hailu E, Finan C, Aseffa A, Davey G, Newport MJ, Rotimi CN, Adeyemo A: Prediction of HLA class II alleles using SNPs in an African population. PLoS One 2012, 7(6):e40206.
  • [32]Zhang XC, Li SS, Wang H, Hansen JA, Zhao LP: Empirical evaluations of analytical issues arising from predicting HLA alleles using multiple SNPs. BMC Genet 2011, 12:39.
  • [33]Beuten J, Halder I, Fowler SP, Groing HH, Duggirala R, Arya R, Thompson IM, Leach RJ, Lehman DM: Wide disparity in genetic admixture among Mexican Americans from San Antonio, TX. Ann Hum Genet 2011, 75(4):529-538.
  • [34]Halder I, Yang BZ, Kranzler HR, Stein MB, Shriver MD, Gelernter J: Measurement of admixture proportions and description of admixture structure in different U.S. populations. Hum Mutat 2009, 30(9):1299-1309.
  • [35]Klimentidis YC, Miller GFShriver MD: Genetic admixture, self-reported ethnicity, self-estimated admixture, and skin pigmentation among Hispanics and Native Americans. Am J Phys Anthropol 2009, 138(4):375-383.
  • [36]Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G, Kittles R, Alarcon-Riquelme ME, Gregersen PK, Belmont JW, De La Vega FM, Seldin MF: Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 2009, 30(1):69-78.
  • [37]Price AL, Patterson N, Yu F, Cox DR, Waliszewska A, McDonald GJ, Tandon A, Schirmer C, Neubauer J, Bedoya G, Duque C, Villegas A, Bortolini MC, Salzano FM, Gallo C, Mazzotti G, Tello-Ruiz M, Riba L, Aguilar-Salinas CA, Canizales-Quinteros S, Menjivar M, Klitz W, Henderson B, Haiman CA, Winkler C, Tusie-Luna T, Ruiz-Linares A, Reich D: A genomewide admixture map for Latino populations. Am J Hum Genet 2007, 80(6):1024-1036.
  • [38]Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R, Forrester T, Allison DB, Deka R, Ferrell RE, Shriver MD: Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 1998, 63(6):1839-1851.
  • [39]Furst D, Solgi G, Schrezenmeier H, Mytilineos J: The frequency of DRB1*1454 in South German Caucasians. Tissue Antigens 2010, 76(1):57-59.
  • [40]Shi L, Kulski JK, Zhang H, Dong Z, Cao D, Zhou J, Yu J, Yao Y: Association and differentiation of MHC class I and II polymorphic Alu insertions and HLA-A, −B, −C and -DRB1 alleles in the Chinese Han population. Mol Genet Genomics 2014, 289(1):93-101.
  • [41]Spinola H, Couto AR, Peixoto MJ, Anagnostou P, Destro-Bisol G, Spedini G, Lopez-Larrea C, Bruges-Armas J: HLA class-I diversity in Cameroon: evidence for a north–south structure of genetic variation and relationships with African populations. Ann Hum Genet 2011, 75(6):665-677.
  • [42]Buhler S, Sanchez-Mazas A: HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS One 2011, 6(2):e14643.
  • [43]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [44]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20(9):1297-1303.
  • [45]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011, 43(5):491-498.
  • [46]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [47]Howie BN, Donnelly P, Marchini J: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009, 5(6):e1000529.
  • [48]Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R: The variant call format and VCFtools. Bioinformatics 2011, 27(15):2156-2158.
  • [49]Hollenbach JA, Mack SJ, Gourraud PA, Single RM, Maiers M, Middleton D, Thomson G, Marsh SG, Varney MD: A community standard for immunogenomic data reporting and analysis: proposal for a STrengthening the REporting of Immunogenomic Studies statement. Tissue Antigens 2011, 78(5):333-344.
  • [50]Pasaniuc B, Sankararaman S, Kimmel G, Halperin E: Inference of locus-specific ancestry in closely related populations. Bioinformatics 2009, 25(12):i213-i221.
  • [51]International HapMap Consortium: The International HapMap Project. Nature 2003, 426(6968):789-796.
  文献评价指标  
  下载次数:7次 浏览次数:28次