期刊论文详细信息
BMC Clinical Pharmacology
Role of astrocytes in manganese mediated neurotoxicity
Michael Aschner1  Marta Sidoryk-Wegrzynowicz2 
[1] Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 23233, USA;Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 23233, USA
关键词: Ubiquitin-mediated proteolytic system;    PKC signaling;    Neurotransmission;    Glutamate (Glu);    Glutamine (Gln);    Transporter;    Neurodegeneration;    Manganese (Mn);    Astrocytes;   
Others  :  860612
DOI  :  10.1186/2050-6511-14-23
 received in 2012-12-13, accepted in 2013-04-10,  发布年份 2013
PDF
【 摘 要 】

Astrocytes are responsible for numerous aspects of metabolic support, nutrition, control of the ion and neurotransmitter environment in central nervous system (CNS). Failure by astrocytes to support essential neuronal metabolic requirements plays a fundamental role in the pathogenesis of brain injury and the ensuing neuronal death. Astrocyte-neuron interactions play a central role in brain homeostasis, in particular via neurotransmitter recycling functions. Disruption of the glutamine (Gln)/glutamate (Glu) -γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons contributes to changes in Glu-ergic and/or GABA-ergic transmission, and is associated with several neuropathological conditions, including manganese (Mn) toxicity. In this review, we discuss recent advances in support of the important roles for astrocytes in normal as well as neuropathological conditions primarily those caused by exposure to Mn.

【 授权许可】

   
2013 Sidoryk-Wegrzynowicz and Aschner; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724191248750.pdf 411KB PDF download
36KB Image download
【 图 表 】

【 参考文献 】
  • [1]Keen CL, Ensunsa JL, Clegg MS: Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 2000, 37:89-121.
  • [2]Wedler FC, Denman RB: Glutamine synthetase: the major Mn (II) enzyme in mammalian brain. Curr Top Cell Regul 1984, 24:153-169.
  • [3]Erikson KM, Syversen T, Aschner JL, Aschner M: Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 2005, 19(3):415-421.
  • [4]Olanow CW: Manganese-induced parkinsonism and Parkinson's disease. Ann N Y Acad Sci 2004, 1012:209-223.
  • [5]Lucchini RG, Martin CJ, Doney BC: From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. Neuromolecular Med 2009, 11(4):311-321.
  • [6]Mergler D, Baldwin M: Early manifestations of manganese neurotoxicity in humans: an update. Environ Res 1997, 73(1–2):92-100.
  • [7]Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ, Beal MF, Calne DB, Perl DP: Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 1996, 46(2):492-498.
  • [8]Kim Y, Bowler RM, Abdelouahab N, Harris M, Gocheva V, Roels HA: Motor function in adults of an Ohio community with environmental manganese exposure. NeuroToxicology 2011, 32(5):606-614.
  • [9]Bowler RM, Gysens S, Diamond E, Nakagawa S, Drezgic M, Roels HA: Manganese exposure: neuropsychological and neurological symptoms and effects in welders. NeuroToxicology 2006, 27(3):315-326.
  • [10]Lander F, Kristiansen J, Lauritsen JM: Manganese exposure in foundry furnacemen and scrap recycling workers. Int Arch Occup Environ Health 1999, 72(8):546-550.
  • [11]Lucchini R, Bergamaschi E, Smargiassi A, Festa D, Apostoli P: Motor function, olfactory threshold, and hematological indices in manganese-exposed ferroalloy workers. Environ Res 1997, 73(1–2):175-180.
  • [12]Wang D, Du X, Zheng W: Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders. Toxicol Lett 2008, 176(1):40-47.
  • [13]McKinney AM, Filice RW, Teksam M, Casey S, Truwit C, Clark HB, Woon C, Liu HY: Diffusion abnormalities of the globi pallidi in manganese neurotoxicity. Neuroradiology 2004, 46(4):291-295.
  • [14]Krachler M, Rossipal E: Concentrations of trace elements in extensively hydrolysed infant formulae and their estimated daily intakes. Ann Nutr Metab 2000, 44(2):68-74.
  • [15]Ferraz HB, Bertolucci PH, Pereira JS, Lima JG, Andrade LA: Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 1988, 38(4):550-553.
  • [16]Finkelstein MM, Jerrett M: A study of the relationships between Parkinson's disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 2007, 104(3):420-432.
  • [17]Aschner M, Gannon M: Manganese (Mn) transport across the rat blood–brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 1994, 33(3):345-349.
  • [18]Aschner M, Aschner JL: Manganese neurotoxicity: cellular effects and blood–brain barrier transport. Neurosci Biobehav Rev 1991, 15(3):333-340.
  • [19]Aschner M, Vrana KE, Zheng W: Manganese uptake and distribution in the central nervous system (CNS). NeuroToxicology 1999, 20(2–3):173-180.
  • [20]Fitsanakis VA, Au C, Erikson KM, Aschner M: The effects of manganese on glutamate, dopamine and gamma-aminobutyric acid regulation. Neurochem Int 2006, 48(6–7):426-433.
  • [21]Bowman AB, Kwakye GF, Hernandez EH, Aschner M: Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol Organ Soc Mineral Trace Elem 2011, 25(4):191-203.
  • [22]Chen CJ, Liao SL: Oxidative stress involves in astrocytic alterations induced by manganese. Exp Neurol 2002, 175(1):216-225.
  • [23]Erikson KM, Dobson AW, Dorman DC, Aschner M: Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ 2004, 334–335:409-416.
  • [24]Gavin CE, Gunter KK, Gunter TE: Manganese and calcium efflux kinetics in brain mitochondria, Relevance to manganese toxicity. Biochem J 1990, 266(2):329-334.
  • [25]Kowaltowski AJ, Castilho RF, Vercesi AE: Ca (2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am J Physiol 1995, 269(1 Pt 1):C141-147.
  • [26]Liccione JJ, Maines MD: Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 1988, 247(1):156-161.
  • [27]Prabhakaran K, Ghosh D, Chapman GD, Gunasekar PG: Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 2008, 76(4):361-367.
  • [28]Yin Z, Aschner JL, dos Santos AP, Aschner M: Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res 2008, 1203:1-11.
  • [29]Bak LK, Schousboe A, Waagepetersen HS: The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006, 98(3):641-653.
  • [30]Yu AC, Drejer J, Hertz L, Schousboe A: Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 1983, 41(5):1484-1487.
  • [31]Danbolt NC: Glutamate uptake. Prog Neurobiol 2001, 65(1):1-105.
  • [32]Hertz L, Zielke HR: Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 2004, 27(12):735-743.
  • [33]Hertz L, Dienel GA: Energy metabolism in the brain. Int Rev Neurobiol 2002, 51:1-102.
  • [34]Hertz L: Glutamate, a neurotransmitter–and so much more, A synopsis of Wierzba III. Neurochem Int 2006, 48(6–7):416-425.
  • [35]Tamarappoo BK, Raizada MK, Kilberg MS: Identification of a system N-like Na(+)-dependent glutamine transport activity in rat brain neurons. J Neurochem 1997, 68(3):954-960.
  • [36]Collarini EJ, Oxender DL: Mechanisms of transport of amino acids across membranes. Annu Rev Nutr 1987, 7:75-90.
  • [37]Hertz L, Dringen R, Schousboe A, Robinson SR: Astrocytes: glutamate producers for neurons. J Neurosci Res 1999, 57(4):417-428.
  • [38]Norenberg MD, Martinez-Hernandez A: Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 1979, 161(2):303-310.
  • [39]Gras G, Samah B, Hubert A, Leone C, Porcheray F, Rimaniol AC: EAAT expression by macrophages and microglia: still more questions than answers. Amino Acids 2012, 42(1):221-229.
  • [40]Takasaki C, Yamasaki M, Uchigashima M, Konno K, Yanagawa Y, Watanabe M: Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 2010, 32(8):1326-1336.
  • [41]Derouiche A, Frotscher M: Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 1991, 552(2):346-350.
  • [42]Westergaard N, Larsson OM, Jensen B, Schousboe A: Synthesis and release of GABA in cerebral cortical neurons co-cultured with astrocytes from cerebral cortex or cerebellum. Neurochem Int 1992, 20(4):567-575.
  • [43]Kvamme E, Svenneby G, Hertz L, Schousboe A: Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem Res 1982, 7(6):761-770.
  • [44]Schousboe A, Hertz L, Svenneby G, Kvamme E: Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 1979, 32(3):943-950.
  • [45]Dringen R, Hirrlinger J: Glutathione pathways in the brain. Biol Chem 2003, 384(4):505-516.
  • [46]Sagara JI, Miura K, Bannai S: Maintenance of neuronal glutathione by glial cells. J Neurochem 1993, 61(5):1672-1676.
  • [47]Dringen R, Pfeiffer B, Hamprecht B: Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci Offic J Soc Neurosci 1999, 19(2):562-569.
  • [48]Wang XF, Cynader MS: Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem 2000, 74(4):1434-1442.
  • [49]Pellerin L, Magistretti PJ: Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neurosci Rev J Bringing Neurobiol Neurol Psychiatr 2004, 10(1):53-62.
  • [50]Occhipinti R, Somersalo E, Calvetti D: Astrocytes as the glucose shunt for glutamatergic neurons at high activity: an in silico study. J Neurophysiol 2009, 101(5):2528-2538.
  • [51]Belanger M, Magistretti PJ: The role of astroglia in neuroprotection. Dialogues Clin Neurosci 2009, 11(3):281-295.
  • [52]Simpson IA, Carruthers A, Vannucci SJ: Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab Offic J Int Soc Cereb Blood Flow Metabol 2007, 27(11):1766-1791.
  • [53]Nehlig A, Coles JA: Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 2007, 55(12):1238-1250.
  • [54]Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ: Response to ‘comment on recent modeling studies of astrocyte-neuron metabolic interactions’: much ado about nothing. J Cereb Blood Flow Metabol Offic J Int Soc Cereb Blood Flow Metabol 2011, 31(6):1346-1353.
  • [55]Colucci-Guyon E, Gimenez YRM, Maurice T, Babinet C, Privat A: Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 1999, 25(1):33-43.
  • [56]Pekny M, Nilsson M: Astrocyte activation and reactive gliosis. Glia 2005, 50(4):427-434.
  • [57]Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C, Renner O, Bushong E, Ellisman M, Morgan TE: Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci Offic J Soc Neurosci 2004, 24(21):5016-5021.
  • [58]Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C: Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 1994, 79(4):679-694.
  • [59]Liauw J, Hoang S, Choi M, Eroglu C, Choi M, Sun GH, Percy M, Wildman-Tobriner B, Bliss T, Guzman RG: Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metabol Offic J Int Soc Cereb Blood Flow Metabol 2008, 28(10):1722-1732.
  • [60]Liebner S, Czupalla CJ, Wolburg H: Current concepts of blood–brain barrier development. Int J Dev Biol 2011, 55(4–5):467-476.
  • [61]Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007, 28(3):138-145.
  • [62]Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD: A glia-derived signal regulating neuronal differentiation. J Neurosci Offic J Soc Neurosci 2000, 20(21):8012-8020.
  • [63]Heneka MT, Rodriguez JJ, Verkhratsky A: Neuroglia in neurodegeneration. Brain Res Rev 2010, 63(1–2):189-211.
  • [64]Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ: Astrocytes in Alzheimer's disease. Neurotherapeutics J Am Soc Exp NeuroTherapeutics 2010, 7(4):399-412.
  • [65]Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL: Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003, 73(2):176-187.
  • [66]Aloisi F, Care A, Borsellino G, Gallo P, Rosa S, Bassani A, Cabibbo A, Testa U, Levi G, Peschle C: Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol 1992, 149(7):2358-2366.
  • [67]Yata K, Oikawa S, Sasaki R, Shindo A, Yang R, Murata M, Kanamaru K, Tomimoto H: Astrocytic neuroprotection through induction of cytoprotective molecules; a proteomic analysis of mutant P301S tau-transgenic mouse. Brain Res 2011, 1410:12-23.
  • [68]Maragakis NJ, Rothstein JD: Glutamate transporters in neurologic disease. Arch Neurol 2001, 58(3):365-370.
  • [69]Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB, Function MRCC: Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 2010, 31(4):578-590.
  • [70]Le Prince G, Delaere P, Fages C, Lefrancois T, Touret M, Salanon M, Tardy M: Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type. Neurochem Res 1995, 20(7):859-862.
  • [71]Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology 1998, 44(5):300-304.
  • [72]Rama Rao KV, Reddy PV, Hazell AS, Norenberg MD: Manganese induces cell swelling in cultured astrocytes. NeuroToxicol 2007, 28(4):807-812.
  • [73]Hazell AS, Normandin L, Norenberg MD, Kennedy G, Yi JH: Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 2006, 396(3):167-171.
  • [74]Hazell AS, Butterworth RF: Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc Soc Exp Biol Med Soc Exp Biol Med 1999, 222(2):99-112.
  • [75]Norenberg MD: A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Investig J Tech Meth Pathol 1977, 36(6):618-627.
  • [76]Pilbeam CM, Anderson RM, Bhathal PS: The brain in experimental portal-systemic encephalopathy. I. Morphological changes in three animal models. J Pathol 1983, 140(4):331-345.
  • [77]Traber PG, Dal Canto M, Ganger DR, Blei AT: Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood–brain barrier. Hepatology 1987, 7(6):1272-1277.
  • [78]Butterworth RF: Neurotransmitter dysfunction in hepatic encephalopathy: new approaches and new findings. Metab Brain Dis 2001, 16(1–2):55-65.
  • [79]Butterworth RF: Pathophysiology of hepatic encephalopathy: The concept of synergism. Hepatol Res Offic J Jpn Soc Hepatol 2008, 38(Suppl 1):S116-121.
  • [80]Jayakumar AR, Rama Rao KV, Kalaiselvi P, Norenberg MD: Combined effects of ammonia and manganese on astrocytes in culture. Neurochem Res 2004, 29(11):2051-2056.
  • [81]Aschner M, Gannon M, Kimelberg HK: Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 1992, 58(2):730-735.
  • [82]Morello M, Canini A, Mattioli P, Sorge RP, Alimonti A, Bocca B, Forte G, Martorana A, Bernardi G, Sancesario G: Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats An electron spectroscopy imaging and electron energy-loss spectroscopy study. NeuroToxicology 2008, 29(1):60-72.
  • [83]Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, Aschner M: Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci Offic J Soc Toxicol 2007, 98(1):198-205.
  • [84]Erikson KM, Dorman DC, Lash LH, Aschner M: Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. NeuroToxicology 2008, 29(3):377-385.
  • [85]Dukhande VV, Malthankar-Phatak GH, Hugus JJ, Daniels CK, Lai JC: Manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells. Neurochem Res 2006, 31(11):1349-1357.
  • [86]Saransaari P, Oja SS: Taurine and neural cell damage. Amino Acids 2000, 19(3–4):509-526.
  • [87]Gjedde A, Marrett S: Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. J Cereb Blood Flow Metab Offic J Int Soc Cereb Blood Flow Metab 2001, 21(12):1384-1392.
  • [88]Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M: Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 2006, 111(1–3):199-215.
  • [89]Erikson KM, Dorman DC, Lash LH, Aschner M: Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol Sci Offic J Soc Toxicol 2007, 97(2):459-466.
  • [90]Shank RP, Bennett GS, Freytag SO, Campbell GL: Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 1985, 329(1–2):364-367.
  • [91]Zwingmann C, Leibfritz D, Hazell AS: Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab Offic J Int Soc Cereb Blood Flow Metabol 2003, 23(6):756-771.
  • [92]Sengupta A, Mense SM, Lan C, Zhou M, Mauro RE, Kellerman L, Bentsman G, Volsky DJ, Louis ED, Graziano JH: Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. NeuroToxicol 2007, 28(3):478-489.
  • [93]Hazell AS, Norenberg MD: Ammonia and manganese increase arginine uptake in cultured astrocytes. Neurochem Res 1998, 23(6):869-873.
  • [94]Tjalkens RB, Liu X, Mohl B, Wright T, Moreno JA, Carbone DL, Safe S: The peroxisome proliferator-activated receptor-gamma agonist 1,1-bis(3’-indolyl)-1-(p-trifluoromethylphenyl)methane suppresses manganese-induced production of nitric oxide in astrocytes and inhibits apoptosis in cocultured PC12 cells. J Neurosci Res 2008, 86(3):618-629.
  • [95]Barhoumi R, Faske J, Liu X, Tjalkens RB: Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Brain Res Mol Brain Res 2004, 122(2):167-179.
  • [96]Rama Rao KV, Jayakumar AR, Tong X, Curtis KM, Norenberg MD: Brain aquaporin-4 in experimental acute liver failure. J Neuropathol Exp Neurol 2010, 69(9):869-879.
  • [97]Giordano G, Pizzurro D, VanDeMark K, Guizzetti M, Costa LG: Manganese inhibits the ability of astrocytes to promote neuronal differentiation. Toxicol Appl Pharmacol 2009, 240(2):226-235.
  • [98]Broer S, Brookes N: Transfer of glutamine between astrocytes and neurons. J Neurochem 2001, 77(3):705-719.
  • [99]Chaudhry FA, Krizaj D, Larsson P, Reimer RJ, Wreden C, Storm-Mathisen J, Copenhagen D, Kavanaugh M, Edwards RH: Coupled and uncoupled proton movement by amino acid transport system N. EMBO J 2001, 20(24):7041-7051.
  • [100]Chaudhry FA, Reimer RJ, Edwards RH: The glutamine commute: take the N line and transfer to the A. J Cell Biol 2002, 157(3):349-355.
  • [101]Broer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, Lang F, Broer S: The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 1999, 73(5):2184-2194.
  • [102]Broer A, Wagner CA, Lang F, Broer S: The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 2000, 349(Pt 3):787-795.
  • [103]Xiang J, Ennis SR, Abdelkarim GE, Fujisawa M, Kawai N, Keep RF: Glutamine transport at the blood–brain and blood-cerebrospinal fluid barriers. Neurochem Int 2003, 43(4–5):279-288.
  • [104]Sidoryk-Wegrzynowicz M, Lee E, Albrecht J, Aschner M: Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 2009, 110(3):822-830.
  • [105]Sidoryk-Wegrzynowicz M, Lee ES, Ni M, Aschner M: Manganese-induced downregulation of astroglial glutamine transporter SNAT3 involves ubiquitin-mediated proteolytic system. Glia 2010, 58(16):1905-1912.
  • [106]Balkrishna S, Broer A, Kingsland A, Broer S: Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physiol 2010, 299(5):C1047-1057.
  • [107]Pawlik TM, Souba WW, Sweeney TJ, Bode BP: Phorbol esters rapidly attenuate glutamine uptake and growth in human colon carcinoma cells. J Surg Res 2000, 90(2):149-155.
  • [108]Nissen-Meyer LS, Popescu MC, Chaudhry FA, Hamdani el H: Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking. J Neurosci 2011, 31(17):6565-6575.
  • [109]Jentsch S, Schlenker S: Selective protein degradation: a journey's end within the proteasome. Cell 1995, 82(6):881-884.
  • [110]Geetha T, Wooten MW: TrkA receptor endolysosomal degradation is both ubiquitin and proteasome dependent. Traffic 2008, 9(7):1146-1156.
  • [111]Rotin D, Staub O: Nedd4-2 and the regulation of epithelial sodium transport. Front Physiol 2012, 3:212.
  • [112]Boehmer C, Okur F, Setiawan I, Broer S, Lang F: Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB. Biochem Biophys Res Commun 2003, 306(1):156-162.
  • [113]Guilarte TR, Burton NC, Verina T, Prabhu VV, Becker KG, Syversen T, Schneider JS: Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem 2008, 105(5):1948-1959.
  • [114]Miranda M, Dionne KR, Sorkina T, Sorkin A: Three ubiquitin conjugation sites in the amino terminus of the dopamine transporter mediate protein kinase C-dependent endocytosis of the transporter. Mol Biol Cell 2007, 18(1):313-323.
  • [115]Sorkina T, Miranda M, Dionne KR, Hoover BR, Zahniser NR, Sorkin A: RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J Neurosci Offic J Soc Neurosci 2006, 26(31):8195-8205.
  • [116]Mayer ML, Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987, 28(3):197-276.
  • [117]Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T: Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997, 276(5319):1699-1702.
  • [118]Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N: Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 1998, 10(3):976-988.
  • [119]Sheldon AL, Robinson MB: The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 2007, 51(6–7):333-355.
  • [120]Lee ES, Sidoryk M, Jiang H, Yin Z, Aschner M: Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 2009, 110(2):530-544.
  • [121]Mutkus L, Aschner JL, Fitsanakis V, Aschner M: The in vitro uptake of glutamate in GLAST and GLT-1 transfected mutant CHO-K1 cells is inhibited by manganese. Biol Trace Elem Res 2005, 107(3):221-230.
  • [122]Sidoryk-Wegrzynowicz M, Lee E, Aschner M: Mechanism of Mn(II)-mediated dysregulation of glutamine-glutamate cycle: focus on glutamate turnover. J Neurochem 2012, 122(4):856-867.
  • [123]Susarla BT, Robinson MB: Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester. Neurochem Int 2008, 52(4–5):709-722.
  • [124]Sidoryk-Wegrzynowicz M, Lee E, Albrecht J, Aschner M: Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 2012, 110(3):822-830.
  • [125]Conradt M, Stoffel W: Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J Neurochem 1997, 68(3):1244-1251.
  • [126]Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V: Role of proteolytic activation of protein kinase Cdelta in oxidative stress-induced apoptosis. Antioxid Redox Signal 2003, 5(5):609-620.
  • [127]Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG: Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther 2005, 313(1):46-55.
  • [128]Oubrahim H, Chock PB, Stadtman ER: Manganese(II) induces apoptotic cell death in NIH3T3 cells via a caspase-12-dependent pathway. J Biol Chem 2002, 277(23):20135-20138.
  • [129]Chun HS, Lee H, Son JH: Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neurosci Lett 2001, 316(1):5-8.
  • [130]Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG: Activation of protein kinase C delta by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochem Pharmacol 2005, 69(1):133-146.
  文献评价指标  
  下载次数:7次 浏览次数:3次