BMC Microbiology | |
The effect of training set on the classification of honey bee gut microbiota using the Naïve Bayesian Classifier | |
Guus Roeselers2  Irene LG Newton1  | |
[1] Department of Biology, 1001 E 3rd Street, Bloomington, IN, 47405, USA;Microbiology & Systems Biology group, TNO, Utrechtseweg, Zeist,The Netherlands | |
关键词: Taxonomy; Pyrosequencing; Naïve Bayesian classifier; Microbiota; Gut; Honey bee; | |
Others : 1221733 DOI : 10.1186/1471-2180-12-221 |
|
received in 2012-05-14, accepted in 2012-09-23, 发布年份 2012 | |
【 摘 要 】
Background
Microbial ecologists now routinely utilize next-generation sequencing methods to assess microbial diversity in the environment. One tool heavily utilized by many groups is the Naïve Bayesian Classifier developed by the Ribosomal Database Project (RDP-NBC). However, the consistency and confidence of classifications provided by the RDP-NBC is dependent on the training set utilized.
Results
We explored the stability of classification of honey bee gut microbiota sequences by the RDP-NBC utilizing three publically available ribosomal RNA sequence databases as training sets: ARB-SILVA, Greengenes and RDP. We found that the inclusion of previously published, high-quality, full-length sequences from 16S rRNA clone libraries improved the precision in classification of novel bee-associated sequences. Specifically, by including bee-specific 16S rRNA gene sequences a larger fraction of sequences were classified at a higher confidence by the RDP-NBC (based on bootstrap scores).
Conclusions
Results from the analysis of these bee-associated sequences have ramifications for other environments represented by few sequences in the public databases or few bacterial isolates. We conclude that for the exploration of relatively novel habitats, the inclusion of high-quality, full-length 16S rRNA gene sequences allows for a more confident taxonomic classification.
【 授权许可】
2012 Newton and Roeselers; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150803092926246.pdf | 334KB | download | |
Figure 2. | 138KB | Image | download |
Figure 1. | 84KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L: Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS One 2008, 3(7):e2836.
- [2]Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N: Examining the global distribution of dominant archaeal populations in soil. ISME J 2011, 5(5):908-917.
- [3]Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad Sci USA 2011, 108:4516-4522.
- [4]Dethlefsen L, Huse S, Sogin ML, Relman DA: The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol 2008, 6(11):2383-2400.
- [5]Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML: Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLoS Genet 2008, 4(11):e1000255.
- [6]Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE: Succession of microbial consortia in the developing infant gut microbiome. P Natl Acad Sci USA 2011, 108:4578-4585.
- [7]Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007, 73(16):5261-5267.
- [8]Garrity GM, Bell JA, Lilburn TG: Taxonomic Outline of the Prokaryotes Bergey's Manual of Systematic Bacteriology, Second Edition, release 5.0. New York, NY: Springer-Verlag; 2004.
- [9]Domingos P, Pazzani M: On the optimality of the simple Bayesian classifier under zero–one loss. Mach Learn 1997, 29(2–3):103-130.
- [10]Friedman N, Geiger D, Goldszmidt M: Bayesian network classifiers. Mach Learn 1997, 29(2–3):131-163.
- [11]Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE: Impact of training sets on classification of high-throughput bacterial 16 s rRNA gene surveys. ISME J 2012, 6(1):94-103.
- [12]Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J: Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 2008, 36(7):2230-2239.
- [13]Wu M, Eisen JA: A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008, 9(10):R151. BioMed Central Full Text
- [14]Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, et al.: Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 2007, 450(7169):560-U517.
- [15]Soergel D, Dey N, Knight R, Brenner S: Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 2012.
- [16]DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006, 72(7):5069-5072.
- [17]Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, et al.: A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007, 318(5848):283-287.
- [18]Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA: A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011, 20(3):619-628.
- [19]Jeyaprakash A, Hoy MA, Allsopp MH: Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 2003, 84(2):96-103.
- [20]Koch H, Schmid-Hempel P: Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. P Natl Acad Sci USA 2011, 108(48):19288-19292.
- [21]Olofsson TC, Vasquez A: Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 2008, 57(4):356-363.
- [22]Vasquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC: Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLoS One 2012, 7(3):e33188.
- [23]Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35(21):7188-7196.
- [24]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, et al.: ARB: a software environment for sequence data. Nucleic Acids Res 2004, 32(4):1363-1371.
- [25]Mattila HR, Rios D, W-S VE, Roeselers G, Newton ILG: Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 2012, 7:e32962.
- [26]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75(23):7537-7541.
- [27]McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012, 6(3):610-618.
- [28]Euzeby JP: List of bacterial names with standing in nomenclature: A folder available on the Internet. Int J Syst Bacteriol 1997, 47(2):590-592.
- [29]Lan Y, Wang Q, Cole JR, Rosen GL: Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS One 2012, 7(3):e32491.
- [30]Moran NA, Hansen AK, Powell E, Sabree ZL: Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 2012, 7(4):e36393.