期刊论文详细信息
BMC Genomics
Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila
Eran Tauber1  Charalambos P. Kyriacou1  Adeolu B. Adewoye1 
[1] Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
关键词: Circadian phase shift;    Gene expression;    Chromatin remodelling;    Microarrays;    Drosophila;    Light entrainment;    Transcriptome;    Circadian clock;   
Others  :  1222434
DOI  :  10.1186/s12864-015-1787-7
 received in 2015-05-01, accepted in 2015-07-20,  发布年份 2015
PDF
【 摘 要 】

Background

The environmental light–dark cycle is the dominant cue that maintains 24-h biological rhythms in multicellular organisms. In Drosophila, light entrainment is mediated by the photosensitive protein CRYPTOCHROME, but the role and extent of transcription regulation in light resetting of the dipteran clock is yet unknown. Given the broad transcriptional changes in response to light previously identified in mammals, we have sought to analyse light-induced global transcriptional changes in the fly’s head by using Affymetrix microarrays. Flies were subjected to a 30-min light pulse during the early night (3 h after lights-off), a stimulus which causes a substantial phase delay of the circadian rhythm. We then analysed changes in gene expression 1 h after the light stimulus.

Results

We identified 200 genes whose transcripts were significantly altered in response to the light pulse at a false discovery rate cut-off of 10 %. Analysis of these genes and their biological functions suggests the involvement of at least six biological processes in light-induced delay phase shifts of rhythmic activities. These processes include signalling, ion channel transport, receptor activity, synaptic organisation, signal transduction, and chromatin remodelling. Using RNAi, the expression of 22 genes was downregulated in the clock neurons, leading to significant effects on circadian output. For example, while continuous light normally causes arrhythmicity in wild-type flies, the knockdown of Kr-h1, Nipped-A, Thor, nrv1, Nf1, CG11155 (ionotropic glutamate receptor), and Fmr1 resulted in flies that were rhythmic, suggesting a disruption in the light input pathway to the clock.

Conclusions

Our analysis provides a first insight into the early responsive genes that are activated by light and their contribution to light resetting of the Drosophila clock. The analysis suggests multiple domains and pathways that might be associated with light entrainment, including a mechanism that was represented by a light-activated set of chromatin remodelling genes.

【 授权许可】

   
2015 Adewoye et al.

【 预 览 】
附件列表
Files Size Format View
20150821021258461.pdf 992KB PDF download
Fig. 6. 18KB Image download
Fig. 5. 37KB Image download
Fig. 4. 15KB Image download
81KB Image download
Figure 5. 22KB Image download
Fig. 1. 24KB Image download
【 图 表 】

Fig. 1.

Figure 5.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Doherty CJ, Kay SA. Circadian control of global gene expression patterns. Annu Rev Genet. 2010; 44:419-444.
  • [2]Pegoraro M, Tauber E. Animal clocks: a multitude of molecular mechanisms for circadian timekeeping. Wiley Interdiscip Rev RNA. 2011; 2(2):312-320.
  • [3]Saunders DS. An introduction to biological rhythms. Wiley, New York; 1977.
  • [4]Johnson CH, Elliott JA, Foster R. Entrainment of circadian programs. Chronobiol Int. 2003; 20(5):741-774.
  • [5]Emery P, So WV, Kaneko M, Hall JC, Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998; 95(5):669-79.
  • [6]Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA et al.. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998; 95(5):681-692.
  • [7]Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ et al.. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999; 285(5427):553-6.
  • [8]Peschel N, Veleri S, Stanewsky R. Veela defines a molecular link between cryptochrome and timeless in the light-input pathway to Drosophila’s circadian clock. Proc Natl Acad Sci U S A. 2006; 103(46):17313-17318.
  • [9]Koh K, Zheng X, Sehgal A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science. 2006; 312(5781):1809-1812.
  • [10]Ko HW, Jiang J, Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature. 2002; 420(6916):673-8.
  • [11]Knowles A, Koh K, Wu J, Chien C, Chamovitz DA, Blau J. The COP9 signalosome is required for light-dependent timeless degradation and Drosophila clock resetting. J Neurosci. 2009; 29(4):1152-1162.
  • [12]Grima B, Dognon A, Lamouroux A, Chélot E, Rouyer F. CULLIN-3 Controls TIMELESS oscillations in the drosophila circadian clock. PLoS Biology. 2012; 10(8):e1001367.
  • [13]Ozturk N, VanVickle-Chavez SJ, Akileswaran L, Van Gelder RN, Sancar A. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc Natl Acad Sci U S A. 2013; 110(13):4980-4985.
  • [14]Dubruille RL, Murad A, Rosbash M, Emery P. A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genet. 2009; 5(12):e1000787.
  • [15]Araki R, Nakahara M, Fukumura R, Takahashi H, Mori K, Umeda N et al.. Identification of genes that express in response to light exposure and express rhythmically in a circadian manner in the mouse suprachiasmatic nucleus. Brain Res. 2006; 1098(1):9-18.
  • [16]Porterfield VM, Piontkivska H, Mintz EM. Identification of novel light-induced genes in the suprachiasmatic nucleus. BMC Neurosci. 2007; 8:98. BioMed Central Full Text
  • [17]Ben-Shlomo R, Akhtar RA, Collins BH, Judah DJ, Davies R, Kyriacou CP. Light pulse-induced heme and iron-associated transcripts in mouse brain: A microarray analysis. Chronobiol Int. 2005; 22(3):455-471.
  • [18]Weger BD, Sahinbas M, Otto GW, Mracek P, Armant O, Dolle D et al.. The light responsive transcriptome of the Zebrafish: Function and regulation. PLoS ONE. 2011; 6(2):e17080.
  • [19]Zhu H, Vadigepalli R, Rafferty R, Gonye GE, Weaver DR, Schwaber JS. Integrative gene regulatory network analysis reveals light-induced regional gene expression phase shift programs in the mouse suprachiasmatic nucleus. PLoS ONE. 2012; 7(5):e37833.
  • [20]Antle MC, Silver R. Orchestrating time: Arrangements of the brain circadian clock. Trends Neurosci. 2005; 28(3):145-151.
  • [21]Ebling FJP. The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol. 1996; 50(2–3):109-132.
  • [22]Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU. Resetting the biological clock: Mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci. 1997; 17(2):667-675.
  • [23]Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 1997; 91(7):1055-1064.
  • [24]Akashi M, Nishida E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 2000; 14(6):645-649.
  • [25]Field MD, Maywood ES, O’Brien JA, Weaver DR, Reppert SM, Hastings MH. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron. 2000; 25(2):437-447.
  • [26]Ben-Shlomo R, Kyriacou CP. Light pulses administered during the circadian dark phase alter expression of cell cycle associated transcripts in mouse brain. Cancer Genet Cytogenet. 2010; 197(1):65-70.
  • [27]Wijnen H, Naef F, Boothroyd C, Claridge-Chang A, Young MW. Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet. 2006; 2(3):0326-0343.
  • [28]Lee C, Parikh V, Itsukaichi T, Bae K, Edery I. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science. 1996; 271(5256):1740-4.
  • [29]Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5):284-287.
  • [30]Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 2003; 421(6919):177-82.
  • [31]Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006; 125(3):497-508.
  • [32]Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci. 2000; 3(12):1241-1247.
  • [33]Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol. 2004; 24(14):6278-6287.
  • [34]Muramatsu D, Singh PB, Kimura H, Tachibana M, Shinkai Y. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h. J Biol Chem. 2013; 288(35):25285-25296.
  • [35]Hung HC, Maurer C, Kay SA, Weber F. Circadian transcription depends on limiting amounts of the transcription co-activator nejire/CBP. J Biol Chem. 2007; 282(43):31349-31357.
  • [36]Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009; 459(7243):113-117.
  • [37]Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A et al.. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development. 2009; 136(18):3131-3141.
  • [38]Colwell CS, Foster RG, Menaker M. NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Res. 1991; 554(1–2):105-110.
  • [39]Gorska-Andrzejak J, Salvaterra PM, Meinertzhagen IA, Krzeptowski W, Gorlich A, Pyza E. Cyclical expression of Na+/K + −ATPase in the visual system of Drosophila melanogaster. J Insect Physiol. 2009; 55(5):459-468.
  • [40]Roberts L, Leise TL, Noguchi T, Galschiodt AM, Houl JH, Welsh DK et al.. Light evokes rapid circadian network oscillator desynchrony followed by gradual phase retuning of synchrony. Curr Biol. 2015; 25(7):858-867.
  • [41]Khalsa SB, Block GD. Calcium channels mediate phase shifts of the Bulla circadian pacemaker. J Comp Physiol A. 1988; 164(2):195-206.
  • [42]Njus D, Sulzman FM, Hastings JW. Membrane model for the circadian clock. Nature. 1974; 248(5444):116-120.
  • [43]Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. Circadian regulation of gene expression systems in the Drosophila head. Neuron. 2001; 32(4):657-671.
  • [44]McDonald MJ, Rosbash M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell. 2001; 107(5):567-578.
  • [45]Ceriani MF, Hogenesch JB, Yanovsky M, Panda S, Straume M, Kay SA. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci. 2002; 22(21):9305-9319.
  • [46]Lin Y, Han M, Shimada B, Wang L, Gibler TM, Amarakone A et al.. Influence of theperiod-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2002; 99(14):9562-9567.
  • [47]Ueda HR, Matsumoto A, Kawamura M, Iino M, Tanimura T, Hashimoto S. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem. 2002; 277(16):14048-14052.
  • [48]Muskus MJ, Preuss F, Fan JY, Bjes ES, Price JL. Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms. Mol Cell Biol. 2007; 27(23):8049-8064.
  • [49]Nagoshi E, Sugino K, Kula E, Okazaki E, Tachibana T, Nelson S et al.. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat Neurosci. 2010; 13(1):60-68.
  • [50]Kula-Eversole E, Nagoshi E, Shang Y, Rodriguez J, Allada R, Rosbash M. Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A. 2010; 107(30):13497-13502.
  • [51]Ruben M, Drapeau MD, Mizrak D, Blau J. A mechanism for circadian control of pacemaker neuron excitability. J Biol Rhythms. 2012; 27(5):353-364.
  • [52]Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M et al.. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007; 448(7150):151-156.
  • [53]Rosato E, Kyriacou CP. Analysis of locomotor activity rhythms in Drosophila. Nat Protoc. 2006; 1(2):559-568.
  • [54]Wettenhall JM, Simpson KM, Satterley K, Smyth GK. affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics. 2006; 22(7):897-899.
  • [55]Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004; 573(1–3):83-92.
  • [56]Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003; 100(16):9440-9445.
  • [57]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al.. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013; 41(Database issue):D991-5.
  • [58]Robinson SW, Herzyk P, Dow JA, Leader DP. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster. Nucleic Acids Res. 2013; 41(Database issue):D744-50.
  文献评价指标  
  下载次数:20次 浏览次数:25次