BMC Systems Biology | |
Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD | |
Edwin K Silverman7  John Quackenbush3  Joseph Loscalzo6  Stephen Rennard2  Russell Bowler1  Nan Laird4  Benjamin A Raby7  Michael H Cho7  Peter J Castaldi5  Craig P Hersh7  Jen-hwa Chu5  | |
[1] Department of Medicine, National Jewish Health, Denver, CO, USA;University of Nebraska Medical Center, Omaha, NE, USA;Dana-Farber Cancer Institute, Boston, MA, USA;Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA;Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA;Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA;Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA | |
关键词: Genetic association analysis; COPD; Phenotypic networks; Network medicine; | |
Others : 863174 DOI : 10.1186/1752-0509-8-78 |
|
received in 2014-04-04, accepted in 2014-06-19, 发布年份 2014 | |
【 摘 要 】
Background
The investigation of complex disease heterogeneity has been challenging. Here, we introduce a network-based approach, using partial correlations, that analyzes the relationships among multiple disease-related phenotypes.
Results
We applied this method to two large, well-characterized studies of chronic obstructive pulmonary disease (COPD). We also examined the associations between these COPD phenotypic networks and other factors, including case-control status, disease severity, and genetic variants. Using these phenotypic networks, we have detected novel relationships between phenotypes that would not have been observed using traditional epidemiological approaches.
Conclusion
Phenotypic network analysis of complex diseases could provide novel insights into disease susceptibility, disease severity, and genetic mechanisms.
【 授权许可】
2014 Chu et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725030113179.pdf | 718KB | download | |
16KB | Image | download | |
104KB | Image | download | |
55KB | Image | download | |
65KB | Image | download | |
66KB | Image | download | |
54KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Silverman EK: Exacerbations in chronic obstructive pulmonary disease do they contribute to disease progression? Proc Am Thorac Soc 2007, 4(8):586-590.
- [2]Barabási A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Genet Rev 2011, 12:56-68.
- [3]Vidal M, Cusick ME, Barabási A-L: Interactome networks and human disease. Cell 2011, 144:986-998.
- [4]Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH: Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474:380-384.
- [5]Djebbari A, Quackenbush J: Seeded bayesian networks: constructing genetic networks from microarray data. BMC Syst Biol 2008, 2(1):57.
- [6]Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L: The human disease network. Proc Natl Acad Sci 2007, 104(21):8685-8690.
- [7]Schäfer J, Strimmer K: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21(6):754-764.
- [8]Chu J, Lazarus R, Carey VJ, Raby BA: Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes. BMC Syst Biol 2011., 5(89)
- [9]Schäfer J, Strimmer K: A shrinking approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 2007., 4(32)
- [10]Hotelling H: New light on the correlation coefficient and its transforms. J R Stat Soc B 1953, 15:193-232.
- [11]Opgen-Rhein R, Strimmer K: From correlation to causation networks: a simple approximate learing algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 2007., 1(37)
- [12]Senior RM, Silverman EK: Chronic obstructive pulmonary disease. In ACP Medicine: Pulmonary. Edited by Nabel EG. Hamilton: Decker Publishing; 2011:2-2.
- [13]Hersh CP, Jacobson FL, Gill R, Silverman EK: Computed tomography phenotypes in severe, early-onset chronic obstructive pulmonary disease. COPD 2007, 4(4):331-337.
- [14]Agusti A, Calverley PM, Celli B, Coxson HO, Edwards LD, Lomas DA, MacNee W, Miller BE, Rennard S, Silverman EK, Tal-Singer R, Wouters E, Yates JC, Vestbo J: Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res 2010., 11(122)
- [15]Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, Criner GJ, Kim V, Bowler RP, Hanania NA, Anzueto AR, Make BJ, Hokanson JE, Crapo JD, Silverman EK, Martinez FJ, Washko GR: Chronic obstructive pulmonary disease exacerbations in the COPDGene study: Associated radiologic phenotypes. Radiology 2011, 216(1):274-282.
- [16]Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK, Crapo JD: Genetic epidemiology of COPD (COPDGene) study design. COPD 2010, 7(1):32-43.
- [17]Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R: ECLIPSE investigators: Evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE). Eur Respir J 2011, 31(4):869-873.
- [18]Fitch AM, Jones MB: Shortest path analysis using partial correlations for classifying gene functions from gene expression data. Bioinformatics 2009, 25(1):42-47.
- [19]Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson DS, Newell JDJr, Lynch DA: Relationships between airflow obstruction and quantitative ct measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. Am J Roentgenol 2013, 201(3):460-470.
- [20]Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, Ruppert A, Lødrup Carlsen KC, Roses A, Anderson W, Rennard SI, Lomas DA, Silverman EK, Goldstein DB, ICGN Investigators: A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009, 5(3):1000421.
- [21]Wilk JB, Chen T, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, Myers RH, Borecki IB, Silverman EK, Weiss ST, O’Connor GT: A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009, 5(3):1000429.
- [22]Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, DeMeo DL, Hunninghake GM, Litonjua AA, Sparrow D, Lange C, Won S, Murphy JR, Beaty TH, Regan EA, Make BJ, Hokanson JE, Crapo JD, Kong X, Anderson WH, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Pillai SG, Silverman EK: Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature Genet 2010, 42(3):200-202.
- [23]Cho MH, McDonald M-LN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, DeMeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C, Litonjua AA, Sparrow D, Casaburi R, Barr RG, Regan EA, Make BJ, Hokanson JE, Lutz S, Dudenkov TM, Farzadegan H, Hetmanski JB, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Crapo JD, Silverman EK, Beaty TH: Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2014. [10.1016/S2213-2600(14)70002-5]
- [24]Rosa GJM, Valente BD, de los Campos G, Wu X-L, Gianola D, Silva MA: Inferring causal phenotype networks using structural equation models. Genet Sel Evol 2011., 43(6)
- [25]Chen J, Lu P, Zuo X, Shi Q, Zhao H, Luo L, Yi J, Zheng C, Yang Y, Wang W: Clinical datamining of phenotypic network in angina pectoris of coronary heart disease. Evid base Compl Alternative Med 2012, 2012:546230.
- [26]Agusti A, Sobradillo P, Celli B: Addressing the complexity of chronic obstructive pulmonary disease: from phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine. Am J Respir Crit Care Med 2011, 183(9):1129-1137.
- [27]Davis DA, Chawla NV: Exploring and exploiting disease interactions from multi-relational gene and phenotype networks. PLoS ONE 2011, 6(7):22670.
- [28]Yao X, Hao H, Li Y, Li S: Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network. BMC Syst Biol 2011., 5(79)
- [29]Hidalgo CA, Blumm N, Barabási A-L, Christakis NA: A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 2009, 5(4):1000353.