期刊论文详细信息
BMC Microbiology
Cultivation reveals physiological diversity among defensive ‘Streptomyces philanthi’ symbionts of beewolf digger wasps (Hymenoptera, Crabronidae)
Martin Kaltenpoth2  Martin Westermann1  Taras Y Nechitaylo2 
[1] University Hospital, Centre for Electron Microscopy, Jena, Germany;Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Jena, Germany
关键词: Digger wasp;    Beewolf;    Co-evolution;    Mutualism;    Symbiosis;    Physiology;    Streptomyces;   
Others  :  1140646
DOI  :  10.1186/s12866-014-0202-x
 received in 2014-03-02, accepted in 2014-07-18,  发布年份 2014
PDF
【 摘 要 】

Background

Candidatus Streptomyces philanthi’ is a monophyletic clade of formerly uncultured bacterial symbionts in solitary digger wasps of the genera Philanthus, Philanthinus and Trachypus (Hymenoptera, Crabronidae). These bacteria grow in female-specific antennal reservoirs and – after transmission to the cocoon – produce antibiotics protecting the host larvae from fungal infection. However, the symbionts’ refractoriness to cultivation has thus far hampered detailed in vitro studies on their physiology and on the evolutionary changes in metabolic versatility in response to the host environment.

Results

Here we isolated in axenic culture 22 ‘Streptomyces philanthi’ biovars from different host species. Sequencing of gyrB revealed no heterogeneity among isolates within host individuals, suggesting low levels of (micro)diversity or even clonality of the symbionts in individual beewolf antennae. Surprisingly, however, isolates from different host species differed strongly in their physiology. All biovars from the Eurasian/African Philanthus and the South American Trachypus host species had high nutritional demands and were susceptible to most antibiotics tested, suggesting a tight association with the hosts. By contrast, biovars isolated from the genus Philanthinus and the monophyletic North American Philanthus clade were metabolically versatile and showed broad antibiotic resistance. Concordantly, recent horizontal symbiont transfer events – reflected in different symbiont strains infecting the same host species – have been described only among North American Philanthus species, altogether indicative of facultative symbionts potentially capable of a free-living lifestyle. Phylogenetic analyses reveal a strong correlation between symbiont metabolic versatility and host phylogeny, suggesting that the host environment differentially affects the symbionts’ evolutionary fate. Although opportunistic bacteria were occasionally isolated from the antennae of different host species, only filamentous Actinobacteria (genera Streptomyces, Amycolatopsis and Nocardia) could replace ‘S. philanthi’ in the antennal gland reservoirs.

Conclusion

Our results indicate that closely related bacteria from a monophyletic clade of symbionts can experience very different evolutionary trajectories in response to the symbiotic lifestyle, which is reflected in different degrees of metabolic versatility and host-dependency. We propose that the host-provided environment could be an important factor in shaping the degenerative metabolic evolution in the symbionts and deciding whether they evolve into obligate symbionts or remain facultative and capable of a host-independent lifestyle.

【 授权许可】

   
2014 Nechitaylo et al.; BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150325074449683.pdf 3299KB PDF download
Figure 6. 37KB Image download
Figure 5. 189KB Image download
Figure 4. 98KB Image download
Figure 3. 90KB Image download
Figure 2. 97KB Image download
Figure 1. 135KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Moran NA: Symbiosis. Curr Biol 2006, 16:R866-R871.
  • [2]Feldhaar H: Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 2011, 36:533-543.
  • [3]Pontes MH, Dale C: Culture and manipulation of insect facultative symbionts. Trends Microbiol 2006, 14:406-412.
  • [4]Kim JK, Won YJ, Nikoh N, Nakayama H, Han SH, Kikuchi Y, Rhee YH, Park HY, Kwon JY, Kurokawa K, Dohmae N, Fukatsu T, Lee BL: Polyester synthesis genes associated with stress resistance are involved in an insect-bacterium symbiosis. Proc Natl Acad Sci U S A 2013, 110:E2381-E2389.
  • [5]Kim JK, Lee HJ, Kikuchi Y, Kitagawa W, Nikoh N, Fukatsu T, Lee BL: Bacterial cell wall synthesis gene uppP is required forBurkholderiacolonization of the stinkbug gut.Appl Environ Microbiol 2013, 79:4879–4886.
  • [6]Dale C, Beeton M, Harbison C, Jones T, Pontes M: Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus”, an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Appl Environ Microbiol 2006, 72:2997-3004.
  • [7]Dulla GFJ, Go RA, Stahl DA, Davidson SK: Verminephrobacter eiseniae type IV pili and flagella are required to colonize earthworm nephridia. ISME J 2012, 6:1166-1175.
  • [8]Bourtzis K, Miller TA: Insect Symbiosis. Taylor & Francis, Boca Raton, USA; 2004.
  • [9]Brownlie JC, Johnson KN: Symbiont-mediated protection in insect hosts. Trends Microbiol 2009, 17:348-354.
  • [10]Kaltenpoth M, Engl T: Defensive microbial symbionts in Hymenoptera. Functional Ecol 2013, 28:315-327.
  • [11]Seipke RF, Kaltenpoth M, Hutchings MI: Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 2011, 36:862-876.
  • [12]Kaltenpoth M: Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 2009, 17:529-535.
  • [13]Currie CR, Scott JA, Summerbell RC, Malloch D: Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999, 398:701-704.
  • [14]Haeder S, Wirth R, Herz H, Spiteller D: Candicidin-producingStreptomycessupport leaf-cutting ants to protect their fungus garden against the pathogenic fungusEscovopsis.Proc Natl Acad Sci U S A 2009, 106:4742–4746.
  • [15]Barke J, Seipke RF, Gruschow S, Heavens D, Drou N, Bibb MJ, Goss RJ, Yu DW, Hutchings MI: A mixed community of actinomycetes produce multiple antibiotics for the fungus farming antAcromyrmex octospinosus.BMC Biol 2010, 8:109.
  • [16]Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR: Bacterial protection of beetle-fungus mutualism. Science 2008, 322:63.
  • [17]Kaltenpoth M, Gottler W, Herzner G, Strohm E: Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 2005, 15:475-479.
  • [18]Poulsen M, Oh DC, Clardy J, Currie CR: Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 2011, 6:e16763.
  • [19]Le Roes-Hill M, Rohland J, Burton S: Actinobacteria isolated from termite guts as a source of novel oxidative enzymes. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 2011, 100:589-605.
  • [20]Seipke RF, Barke J, Ruiz-Gonzalez MX, Orivel J, Yu DW, Hutchings MI: Fungus-growingAllomerusants are associated with antibiotic-producing actinobacteria.Antonie Van Leeuwenhoek 2012, 101:443–447.
  • [21]Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G, Roeser-Mueller K, Strohm E: ‘CandidatusStreptomyces philanthi’, an endosymbiotic streptomycete in the antennae ofPhilanthusdigger wasps.Int J Syst Evol Microbiol 2006, 56:1403–1411.
  • [22]Kaltenpoth M, Yildirim E, Gurbuz MF, Herzner G, Strohm E: Refining the roots of the beewolf-Streptomycessymbiosis: antennal symbionts in the rare genusPhilanthinus(Hymenoptera, Crabronidae).Appl Environ Microbiol 2012, 78:822–827.
  • [23]Kaltenpoth M, Schmitt T, Strohm E: Hydrocarbons in the antennal gland secretion of female European beewolves,Philanthus triangulum(Hymenoptera, Crabronidae).Chemoecol 2009, 19:219–225.
  • [24]Goettler W, Kaltenpoth M, Herzner G, Strohm E: Morphology and ultrastructure of a bacteria cultivation organ: the antennal glands of female European beewolves,Philanthus triangulum(Hymenoptera, Crabronidae).Arthropod Struct Dev 2007, 36:1–9.
  • [25]Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatos A: Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 2010, 6:261-263.
  • [26]Kaltenpoth M, Goettler W, Koehler S, Strohm E: Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol 2010, 24:463-477.
  • [27]Koehler S, Doubsky J, Kaltenpoth M: Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspring. Front Zool 2013, 10:3. BioMed Central Full Text
  • [28]Kaltenpoth M, Roeser-Mueller M, Koehler S, Peterson A, Nechitaylo T, Stubblefield JW, Herzner G, Seger J, Strohm E: Partner choice and fidelity stabilize co-evolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci U S A 2014, 111:6359-6364.
  • [29]McCutcheon JP, Moran NA: Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2012, 10:13-26.
  • [30]Ochman H: Genomes on the shrink. Proc Natl Acad Sci U S A 2005, 102:11959-11960.
  • [31]Murray RG, Stackebrandt E: Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995, 45:186-187.
  • [32]Wang XJ, Yan YJ, Zhang B, An J, Wang JJ, Tian J, Jiang L, Chen YH, Huang SX, Yin M, Zhang J, Gao AL, Liu CX, Zhu ZX, Xiang WS: Genome sequence of the milbemycin-producing bacteriumStreptomyces bingchenggensis.J Bacteriol 2010, 192:4526–4527.
  • [33]Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG: 50 million years of genomic stasis in endosymbiotic bacteria. Science 2002, 296:2376-2379.
  • [34]McCutcheon JP, Moran NA: Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2010, 2:708-718.
  • [35]Koehler S, Kaltenpoth M: Maternal and environmental effects on symbiont-mediated antimicrobial defense. J Chem Ecol 2013, 39:978-988.
  • [36]Scheuring I, Yu DW: How to assemble a beneficial microbiome in three easy steps. Ecol Lett 2012, 15:1300-1307.
  • [37]Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW: Economic game theory for mutualism and cooperation. Ecol Lett 2011, 14:1300-1312.
  • [38]Sachs JL, Skophammer RG, Regus JU: Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci U S A 2011, 108(Suppl 2):10800-10807.
  • [39]Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA: Practical streptomyces genetics. John Innes Foundation, Norwich, England; 2000.
  • [40]Sambrook J, Russell D: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA; 2001.
  • [41]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490.
  • [42]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinform 2001, 17:754-755.
  • [43]Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001, 294:2310-2314.
  • [44]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform 2003, 19:1572-1574.
  • [45]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [46]Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990, 56:1919-1925.
  • [47]Jin QC, Jin ZH, Xu B, Wang Q, Lei YL, Yao SJ, Cen PL: Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. Biotechnol Lett 2008, 30:1423-1429.
  文献评价指标  
  下载次数:58次 浏览次数:13次