BMC Public Health | |
Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam | |
Marc Choisy3  Pamela Wright1  Ngoc Hoat Luu4  Pim Martens2  Thi Thanh Toan Do4  | |
[1] The Medical Committee Netherlands-Vietnam, Amsterdam, The Netherlands;International Centre for Integrated assessment and Sustainable development, Maastricht University, Maastricht, The Netherlands;Oxford University Clinical Research Unit, Hanoi, Vietnam;Biostatistics and Medical Informatics Department, Institute of Training for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam | |
关键词: Vietnam; Hanoi; Climatic factors; Emergence; Seasonality; Dengue fever; | |
Others : 1126171 DOI : 10.1186/1471-2458-14-1078 |
|
received in 2014-05-14, accepted in 2014-09-29, 发布年份 2014 | |
![]() |
【 摘 要 】
Background
Dengue fever (DF) has been emerging in Hanoi over the last decade. Both DF epidemiology and climate in Hanoi are strongly seasonal. This study aims at characterizing the seasonality of DF in Hanoi and its links to climatic variables as DF incidence increases from year to year.
Methods
Clinical suspected cases of DF from the 14 central districts of Hanoi were obtained from the Ministry of Health over a 8-year period (2002–2009). Wavelet decompositions were used to characterize the main periodic cycles of DF and climatic variables as well as the mean phase angles of these cycles. Cross-wavelet spectra between DF and each climatic variables were also computed. DF reproductive ratio was calculated from Soper’s formula and smoothed to highlight both its long-term trend and seasonality.
Results
Temperature, rainfall, and vapor pressure show strong seasonality. DF and relative humidity show both strong seasonality and a sub-annual periodicity. DF reproductive ratio is increasing through time and displays two clear peaks per year, reflecting the sub-annual periodicity of DF incidence. Temperature, rainfall and vapor pressure lead DF incidence by a lag of 8–10 weeks, constant through time. Relative humidity leads DF by a constant lag of 18 weeks for the annual cycle and a lag decreasing from 14 to 5 weeks for the sub-annual cycle.
Conclusion
Results are interpreted in terms of mosquito population dynamics and immunological interactions between the different dengue serotypes in the human compartment. Given its important population size, its strong seasonality and its dengue emergence, Hanoi offers an ideal natural experiment to test hypotheses on dengue serotypes interactions, knowledge of prime importance for vaccine development.
【 授权许可】
2014 Do et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150218082512930.pdf | 1201KB | ![]() |
|
Figure 4. | 223KB | Image | ![]() |
Figure 3. | 62KB | Image | ![]() |
Figure 2. | 237KB | Image | ![]() |
Figure 1. | 90KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, William Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI: The global distribution and burden of dengue. Nature 2013, 496:504-507.
- [2]Tien TKN, Ha DQ, Hien TK, Quang LC: Predictive indicators for forecasting epidemic of dengue/dengue haemorrhagic fever through epidemiological, virological and entomological surveillance. Dengue Bull 1999, 23:34-39.
- [3]NIHE: Final Report on evaluation of communicable diseases surveillance system in Vietnam 2008. Hanoi: National Institute of Hygiene and Epidemiology; 2009.
- [4]Ha DQ, Ninh TU: Virological surveillance of dengue haemorrhagic fever in Vietnam, 1987–1999. Dengue Bull 2000, 24:18-23.
- [5]Cuong HQ, Hien NT, Duong TN, Phong TV, Cam NN, Farrar J, Nam VS, Thai KTD, Horby P: Quantifying the emergence of dengue in Hanoi, Vietnam: 1998–2009. PLoS Negl Trop Dis 2011, 5(9):e1322.
- [6]Thai KTD, Cazelles B, Nguyen NV, Vo LT, Boni MF, Farrar J, Simmons CP, Rogier van Doorn H, de Vries PJ: Dengue Dynamics in Binh Thuan Province, Southern Vietnam: Periodicity, Synchronicity and Climate Variability. PLoS Negl Trop Dis 2010, 4(7):e747.
- [7]Vietnamese Ministry of Health: Guidance on declaration, communication, and reporting infectious deseases. Circula 2010. 48/2010/TT-BYT. Available online at http://vanban.chinhphu.vn/portal/page/portal/chinhphu/hethongvanban?class_id=1&mode=detail&document_id=99852 webcite
- [8]Toan DTT, Hu W, Thai PQ, Hoat LN, Wright P, Martens P: Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam. Global Health Action 2013, 6:18632.
- [9]Schreiber KV: An investigation of relationships between climate and dengue using a water budgeting technique. Int J Biometeorol 2001, 45:81-89.
- [10]Hales S, de Wet N, Maindonald J, Woodward A: Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 2002, 360(9336):830-834.
- [11]Nagao Y, Tharava U, Chinumsup P, Tawatsin A, Chansang C, Campbell-Lendrum D: Climatic and social risk factors for Aedes infestation in rural Thailand. Trop Med Int Health 2003, 8(7):650-659.
- [12]Depradine C, Lovell E: Climatological variables and the incidence of Dengue fever in Barbados. Int J Environ Health Res 2004, 14(6):429-441.
- [13]Promprou S, Jaroensutasinee M, Jaroensutasinee K: Climatic factors affecting dengue haemorrhagic fever incidence in Southern Thailand. Dengue Bulletin 2005, 29:41-48.
- [14]Promprou S, Jaroensutasinee M, Jaroensutasinee K: Impact of Climatic Factors on Dengue Haemorrhagic Fever Incidence in Southern Thailand. Walailak J Sci & Tech 2005, 2(1):59-70.
- [15]Chowell G, Torre CA, Munayco_Escate C, Suarez-Ognio L, Lopez-Cruz R, Hyman JM, Castillo-Chavez C: Spatial and temporal dynamics of dengue fever in Peru: 1994–2006. Epidemiol Infect 2008, 136(12):1667-1677.
- [16]Hsieh YH, Chen CWS: Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Trop Med Int Health 2009, 16:1-11.
- [17]Johansson MA, Dominici F, Glass GE: Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 2009, 3(2):e382.
- [18]Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q: Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health 2009, 9:395. BioMed Central Full Text
- [19]Hu W, Clements A, William G, Tong S: Dengue fever and El Nino/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med 2010, 67(5):307-311.
- [20]Wu P-C, Guo H-R, Lung SC, Lin CY, HJa S: Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 2007, 103:50-57.
- [21]Gharbi M, Quenel P, Gustave J, Cassadou S, La Ruche G, Girdary L, Marrama L: Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect Dis 2011, 9(11):166.
- [22]Pham HV, Doan HT, Thao TTP, Minh NNT: Ecological factors associated with dengue fever in a Central Highlands province, Vietnam. BMC Infect Dis 2011, 11:172. BioMed Central Full Text
- [23]Pinto E, Coelho M, Oliver L, Massad E: The influence of climate variables on dengue in Singapore. Int J Environ Health Res 2011, 21(6):415-426.
- [24]Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, Guillaumot L, Teurlai M, Gourinat AC, Benzler J, Pfannstiel A, Grangeon JP, Degallier N, Lamballerie X: Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis 2012, 6(2):e1470.
- [25]Hsieh YH, de Arazoza H, Lounes R: Temporal trends and regional variability of 2001–2002 multiwave DENV-3 epidemic in Havana City: did Hurricane Michelle contribute to its severity? Trop Med Int Health 2013, 18(7):830-838.
- [26]Eastin MD, Delmelle E, Casas I, Wexler J, Self C: Intra- and inter-seasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia. Am J Trop Med Hyg 2014. Available online at http://www.ajtmh.org/content/early/recent webcite since 23 June 2014
- [27]Yi B, Zhang Z, Xu D, Xi Y, Fu J, Luo J, Yuan M, Liu S, Zuo Z: Relationship of dengue fever epidemic to Aedes density changed by climate factors in Guangdong Province. Wei Sheng Yan Jiu 2003, 32(2):152-154.
- [28]Shaman J, Kohn M: Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci U S A 2009, 106(9):3243-3248.
- [29]Vietnamese Ministry of Health: Guidelines for Surveillance, Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Circula 2006. 1266/2006/QD-BYT. Available online at http://thuvienphapluat.vn/archive/Quyet-dinh-1266-QD-BYT-sua-doi-huong-dan-giam-sat-va-phong-chong-benh-vb109491.aspx webcite. Medicine Publising House
- [30]Wallace JM, Hobbs PV: Atmospheric Science, An Introductory Survey. Academic New York. 2nd edition. 2006.
- [31]Cazelles B, Chavez M, McMichael AJ, Hales S: Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2005, 2:313-318.
- [32]Cazelles B, Hales S: Infectious Diseases, Climate Influences, and Nonstationarity. PLoS Med 2006, 3(8):328.
- [33]Simões TC, Codeço CT, Nobre AA, Eiras AE: Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes aegypti. PLoS One 2013, 8(8):e64773.
- [34]Cazelles B, Chavez M, Constantin de Magny G, Guegan JF, Hales S: Time-dependent spectral analysis of epidemiological time-series with wavelets. J R Soc Interface 2007, 4(15):625-636.
- [35]Torrence C, Compo GP: A practical guide to wavelet analysis. Bull Am Meteorol Soc 1998, 79:61-78.
- [36]Soper HE: The Interpretation of Periodicity in Disease Prevalence. Roy Stat Soc A 1929, 92:34-61.
- [37]Keeling MJ, Rohani P: Modeling Infectious Diseases in Humans and Animals. Princeton University Press 2008, 5:155-189.
- [38]Andraud M, Hens N, Marais C, Beutels P: Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS One 2012, 7(11):e49085.
- [39]RCoreTeam: R: A Language and Environment for Statistical Computing R. Vienna, Austria: Foundation for Statistical Computing; 2012.
- [40]Gouhier T: Biwavelet: Conduct univariate and bivariate wavelet analyses. 2013. (Version 0.14). Available from http://biwavelet.r-forge.r-project.org webcite
- [41]Center for Excellence in Disaster Management and Humanitarian Assisstance: Dengue fever cases rise after floods plague Vietnam. 2008. Available online at http://reliefweb.int/report/viet-nam/dengue-fever-cases-rise-after-floods-plague-vietnam webcite since 28 Nov 2008
- [42]Thu HM, Aye KM, Thein S: The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitoes. Southeast Asian J Trop Med Public Health 1998, 29:280-284.
- [43]Tipayamongkholgul M, Fang C-T, Klinchan S, Liu CM, King CC: Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996–2005. BMC Public Health 2009, 9:422. BioMed Central Full Text
- [44]Wongkoon S, Jaroensutasinee M, Jaroensutasinee K: Climatic variability and dengue virus transmission in Chiang Rai, Thailand. Biomedica 2011, 27(19):5-13.
- [45]Higa Y, Yen NT, Kawada H, Son TH, Hoa NT, Takagi M: Geographic Distribution of Aedes aegypti and Aedes albopicuts Collected from Used Tires in Vietnam. Am Mosq Control Assoc 2010, 26(1):1-9.
- [46]Recker M, Blyuss KB, Simmons CP, Hien TT, Wills B, Farrar J, Gupta S: Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc R Soc B 2009, 276(1667):2541-2548.