期刊论文详细信息
BMC Genomics
A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti
Joseph E O’Tousa2  Giles E Duffield2  Susanta K Behura2  Samuel SC Rund1  Matthew T Leming2 
[1] Center for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK;Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Galvin Life Sciences Bldg, Notre Dame, IN 46556, USA
关键词: Gene expression;    Microarray;    Diel rhythm;    Database;    Circadian rhythm;    Aedes aegypti;   
Others  :  1127143
DOI  :  10.1186/1471-2164-15-1128
 received in 2014-09-22, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

The mosquito species Aedes aegypti is the primary vector of many arboviral diseases, including dengue and yellow fevers, that are responsible for a large worldwide health burden. The biological rhythms of mosquitoes regulate many of the physiological processes and behaviors that influence the transmission of these diseases. For insight into the molecular basis of biological rhythms, diel and circadian gene expression profiling has been carried out for many species. To bring these resources to Aedes aegypti researchers, we used microarray technology to carry out a genome wide assessment of gene expression during the 24 hour light/dark (LD) cycle and during constant darkness (DD). The purpose of this report is to describe the methods, the validation of the results, and the organization of this database resource.

Description

The Aedes aegypti Circadian Database is a publicly accessible database that can be searched via a text-based query to visualize 44 hour temporal expression patterns of a given gene in Ae. aegypti heads under diel (observed under a 12 hour/12 hour LD cycle) and circadian (observed under DD) conditions. Profiles of gene expression under these conditions were assayed by Nimblegen 12-plex microarrays and rhythmicity was objectively assessed by the JTK_CYCLE algorithm. The output of the search is a graphical representation of the expression data along with computed period length, the time-of-day of gene expression peaks, and statistical determination for rhythmicity.

Conclusion

Our results show that at least 7.9% of the gene set present in the Aedes aegypti head are rhythmic under LD conditions and 6.7% can be considered circadian, oscillating under constant dark conditions. We present these results in the Aedes aegypti Circadian Database through Bioclock, a public website hosted by the University of Notre Dame at http://www.nd.edu/~bioclock/ webcite. This website allows searchable browsing of this quantitative gene expression information. The visualization allows for gene-by-gene comparison of transcript expression under both diel and circadian conditions, and the results are presented graphically in a plot profile of gene expression. The Ae. aegypti Circadian Database provides a community resource for observing diel and circadian fluctuations in gene expression across the Ae. aegypti genome.

【 授权许可】

   
2014 Leming et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220023150216.pdf 1180KB PDF download
Figure 4. 101KB Image download
Figure 3. 125KB Image download
Figure 2. 275KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW: Dengue: a continuing global threat. Nat Rev Microbiol 2010, 8:S7-S16.
  • [2]Jentes ES, Poumerol G, Gershman MD, Hill DR, Lemarchand J, Lewis RF, Staples JE, Tomori O, Wilder-Smith A, Monath TP: The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect Dis 2011, 11:622-632.
  • [3]Staples JE, Breiman RF, Powers AM: Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis 2009, 49:942-948.
  • [4]Meireles-Filho AC, Kyriacou CP: Circadian rhythms in insect disease vectors. Mem Inst Oswaldo Cruz 2013, 108(Suppl 1):48-58.
  • [5]Allada R, Chung BY: Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 2010, 72:605-624.
  • [6]Dunlap J, Loros J, DeCoursey P: Chronobiology: biological timekeeping. Sunderland: Sinauer Associates; 2004.
  • [7]Lin Y, Han M, Shimada B, Wang L, Gibler TM, Amarakone A, Awad TA, Stormo GD, Van Gelder RN, Taghert PH: Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002, 99:9562-9567.
  • [8]Rund SS, Hou TY, Ward SM, Collins FH, Duffield GE: Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 2011, 108:E421-E430.
  • [9]Ptitsyn AA, Reyes-Solis G, Saavedra-Rodriguez K, Betz J, Suchman EL, Carlson JO, Black WCT: Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genomics 2011, 12:153. BioMed Central Full Text
  • [10]Yuan Q, Metterville D, Briscoe AD, Reppert SM: Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 2007, 24:948-955.
  • [11]Ozturk N, Song SH, Selby CP, Sancar A: Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J Biol Chem 2008, 283:3256-3263.
  • [12]Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G: Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 2006, 16:1352-1365.
  • [13]Gentile C, Meireles-Filho AC, Britto C, Lima JB, Valle D, Peixoto AA: Cloning and daily expression of the timeless gene in Aedes aegypti (Diptera:Culicidae). Insect Biochem Mol Biol 2006, 36:878-884.
  • [14]Gentile C, Rivas GB, Meireles-Filho AC, Lima JB, Peixoto AA: Circadian expression of clock genes in two mosquito disease vectors: cry2 is different. J Biol Rhythms 2009, 24:444-451.
  • [15]Duffield GE: DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 2003, 15:991-1002.
  • [16]Kojima S, Shingle DL, Green CB: Post-transcriptional control of circadian rhythms. J Cell Sci 2011, 124:311-320.
  • [17]Ceriani MF, Hogenesch JB, Yanovsky M, Panda S, Straume M, Kay SA: Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 2002, 22:9305-9319.
  • [18]Wijnen H, Naef F, Boothroyd C, Claridge-Chang A, Young MW: Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet 2006, 2:e39.
  • [19]Rund SS, Gentile JE, Duffield GE: Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics 2013, 14:218. BioMed Central Full Text
  • [20]Rund SS, Bonar NA, Champion MM, Ghazi JP, Houk CM, Leming MT, Syed Z, Duffield GE: Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci Rep 2013, 3:2494.
  • [21]Balmert NJ, Rund SS, Ghazi JP, Zhou P, Duffield GE: Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol 2014, 64:30-39.
  • [22]Boorman J: Observations on the habits of mosquitoes of Plateau Province, Northern Nigeria, with special reference to Aedes vittatus (Bigot). Bull Ent Res 1961, 52:709-725.
  • [23]McClelland G: Observations on the mosquito, Aedes (Stegomyia) aegypti (L.), in East Africa: I - the biting cycle in an outdoor population at Entebbe, Uganda. Bull Ent Res 1959, 50:227-235.
  • [24]Haddow A, Gillett JD: Observations on the oviposition-cycle of Aedes (Stegomyia) aegypti (Linnaeus). Ann Trop Med Parisit 1957, 51:159-169.
  • [25]Gillett J, Haddow A, Corbet P: The sugar-feeding cycle in a cage-population of mosquitoes. Entomol Exp Appl 1962, 5:223-232.
  • [26]Clements A: The biology of mosquitoes. UK: CABI Wallingford; 1999.
  • [27]Yang YY, Liu Y, Teng HJ, Sauman I, Sehnal F, Lee HJ: Circadian control of permethrin-resistance in the mosquito Aedes aegypti. J Insect Physiol 2010, 56:1219-1223.
  • [28]Hu X, Leming MT, Metoxen AJ, Whaley MA, O'Tousa JE: Light-mediated control of rhodopsin movement in mosquito photoreceptors. J Neurosci 2012, 32:13661-13667.
  • [29]Hughes ME, Hogenesch JB, Kornacker K: JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms 2010, 25:372-380.
  • [30]Wendell MD, Wilson TG, Higgs S, Black WC: Chemical and gamma-ray mutagenesis of the white gene in Aedes aegypti. Insect Mol Biol 2000, 9:119-125.
  • [31]Rund SS, Lee SJ, Bush BR, Duffield GE: Strain- and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. J Insect Physiol 2012, 58:1609-1619.
  • [32]Tomchaney M, Mysore K, Sun L, Li P, Emrich SJ, Severson DW, Duman-Scheel M: Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain. Biol Sex Differ 2014., 5
  • [33]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.
  • [34]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.
  • [35]de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics 2004, 20:1453-1454.
  • [36]Chauhan C, Behura SK, Debruyn B, Lovin DD, Harker BW, Gomez-Machorro C, Mori A, Romero-Severson J, Severson DW: Comparative expression profiles of midgut genes in dengue virus refractory and susceptible Aedes aegypti across critical period for virus infection. PLoS One 2012, 7:e47350.
  • [37]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95:14863-14868.
  • [38]Saldanha AJ: Java Treeview–extensible visualization of microarray data. Bioinformatics 2004, 20:3246-3248.
  • [39]Morlais I, Severson DW: Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics 2001, 158:1125-1136.
  • [40]Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB: Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
  • [41]Pizarro A, Hayer K, Lahens NF, Hogenesch JB: CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res 2013, 41:D1009-D1013.
  • [42]Behura SK, Gomez-Machorro C, Harker BW, de Bruyn B, Lovin DD, Hemme RR, Mori A, Romero-Severson J, Severson DW: Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis 2011, 5:e1385.
  文献评价指标  
  下载次数:42次 浏览次数:22次