期刊论文详细信息
BMC Evolutionary Biology
The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group?
Alessandro Cellerino1  Kathrin Reichwald3  Matthias Platzer3  Zuzana Musilová2  Alexander Dorn3 
[1] Scuola Normale Superiore, Pisa, Italy;Zoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland;Fritz Lipmann Institute for Age Research-Leibniz Institute, Jena, Germany
关键词: Africa biogeography;    evolution of aging;    life history evolution;    allopatric speciation;    Killifish;   
Others  :  1117888
DOI  :  10.1186/s12862-014-0210-3
 received in 2014-03-04, accepted in 2014-09-23,  发布年份 2014
PDF
【 摘 要 】

Background

Annual Nothobranchius fishes are distributed in East and Southern Africa and inhabit ephemeral pools filled during the monsoon season. Nothobranchius show extreme life-history adaptations: embryos survive by entering diapause and they are the vertebrates with the fastest maturation and the shortest lifespan. The distribution of Nothobranchius overlaps with the East Africa Rift System. The geological and paleoclimatic history of this region is known in detail: in particular, aridification of East Africa and expansion of grassland habitats started 8 Mya and three humid periods between 3 and 1 Mya are superimposed on the longer-term aridification. These climatic oscillations are thought to have shaped evolution of savannah African mammals. We reconstructed the phylogeny of Nothobranchius and dated the different stages of diversification in relation to these paleoclimatic events.

Results

We sequenced one mitochondrial locus and five nuclear loci in 63 specimens and obtained a robust phylogeny. Nothobranchius can be divided in four geographically separated clades whose boundaries largely correspond to the East Africa Rift system. Statistical analysis of dispersal and vicariance identifies a Nilo-Sudan origin with southwards dispersion and confirmed that these four clades are the result of vicariance events In the absence of fossil Nothobranchius, molecular clock was calibrated using more distant outgroups (secondary calibration). This method estimates the age of the Nothobranchius genus to be 8.3 (6.0 – 10.7) My and the separation of the four clades 4.8 (2.7-7.0) Mya. Diversification within the clades was estimated to have started ~3 Mya and most species pairs were estimated to have an age of 0.5-1 My.

Conclusions

The mechanism of Nothobranchius diversification was allopatric and driven by geographic isolation. We propose a scenario where diversification of Nothobranchius started in rough coincidence with aridification of East Africa, establishment of grassland habitats and the appearance of the typical African bovid fauna of the savannah. Although confidence intervals for the estimated ages of the four Nothobranchius clades are quite large, this scenario is compatible with the biology of extant Nothobranchius that are critically dependent on savannah habitats. Therefore, Nothobranchius diversification might have been shaped by the same paleoclimatic events that shaped African ungulate evolution.

【 授权许可】

   
2014 Dorn et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206011946706.pdf 1714KB PDF download
Figure 3. 69KB Image download
Figure 2. 60KB Image download
Figure 1. 102KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Wourms JP: The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomers during the development of annual fish eggs. J Exp Zool 1972, 182(2):169-200.
  • [2]Podrabsky JE, Carpenter JF, Hand SC: Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. Am J Physiol Regul Integr Comp Physiol 2001, 280(1):R123-R131.
  • [3]Podrabsky JE, Lopez JP, Fan TW, Higashi R, Somero GN: Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. J Exp Biol 2007, 210(Pt 13):2253-2266.
  • [4]Genade T, Benedetti M, Terzibasi E, Roncaglia P, Valenzano DR, Cattaneo A, Cellerino A: Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 2005, 4(5):223-233.
  • [5]Terzibasi Tozzini E, Dorn A, Ng'oma E, Polacik M, Blazek R, Reichwald K, Petzold A, Watters B, Reichard M, Cellerino A: Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evol Biol 2013, 13:77. BioMed Central Full Text
  • [6]Polacik M, Donner MT, Reichard M: Age structure of annual Nothobranchius fishes in Mozambique: is there a hatching synchrony? J Fish Biol 2011, 78(3):796-809.
  • [7]Blazek R, Polacik MJ, Reichard M: Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo 2013, 4(1):24. BioMed Central Full Text
  • [8]Di Cicco E, Tozzini ET, Rossi G, Cellerino A: The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol 2011, 46(4):249-256.
  • [9]Hartmann N, Reichwald K, Lechel A, Graf M, Kirschner J, Dorn A, Terzibasi E, Wellner J, Platzer M, Rudolph KL, Cellerino A, Englert C: Telomeres shorten while Tert expression increases during aging of the short-lived fish Nothobranchius furzeri. Mech Aging Dev 2009, 130(5):290-296.
  • [10]Hartmann N, Reichwald K, Wittig I, Drose S, Schmeisser S, Luck C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C: Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 2011, 10(5):824-831.
  • [11]Hsu CY, Chiu YC: Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell 2009, 8(6):726-737.
  • [12]Liu C, Wang X, Feng W, Li G, Su F, Zhang S: Differential expression of aging biomarkers at different life stages of the annual fish Nothobranchius guentheri. Biogerontology 2012, 13(5):501-510.
  • [13]Lucas-Sanchez A, Almaida-Pagan PF, Madrid JA, de Costa J, Mendiola P: Agerelated changes in fatty acid profile and locomotor activity rhythms in Nothobranchius korthausae. Exp Gerontol 2011, 46(12):970-978.
  • [14]Lucas-Sanchez A, Almaida-Pagan PF, Tocher DR, Mendiola P, de Costa J: Age- related changes in mitochondrial membrane composition of nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2013, 69(2):142-151.
  • [15]Terzibasi E, Lafrancois C, Domenici P, Hartmann N, Graf M, Cellerino A: Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell 2009, 8(2):88-99.
  • [16]Tozzini ET, Baumgart M, Battistoni G, Cellerino A: Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell 2012, 11(2):241-251.
  • [17]Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino A: Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 2006, 5(3):275-278.
  • [18]Terzibasi E, Valenzano DR, Benedetti M, Roncaglia P, Cattaneo A, Domenici L, Cellerino A: Large differences in aging phenotype between strains of the shortlived annual fish Nothobranchius furzeri. PLoS One 2008, 3(12):e3866.
  • [19]Kirschner J, Weber D, Neuschl C, Franke A, Bottger M, Zielke L, Powalsky E, Groth M, Shagin D, Petzold A, Hartmann N, Englert C, Brockmann GA, Platzer M, Cellerino A, Reichwald K: Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri- a new vertebrate model for age research. Aging Cell 2012, 11(2):252-261.
  • [20]Bartakova V, Reichard M, Janko K, Pola Ik M, Bla Ek R, Reichwald K, Cellerino A, Bryja J: Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol Biol 2013, 13(1):196. BioMed Central Full Text
  • [21]Dorn A, Ng'oma E, Janko K, Reichwald K, Polacik M, Platzer M, Cellerino A, Reichard M: Phylogeny, genetic variability and colour polymorphism of an emerging animal model: the short-lived annual Nothobranchius fishes from southern Mozambique. Mol Phylogenet Evol 2011, 61(3):739-749.
  • [22]Ng'oma E, Valdesalici S, Reichwald K, Cellerino A: Genetic and morphological studies of Nothobranchius (Cyprinodontiformes) from Malawi with description of Nothobranchius wattersi sp. nov. J Fish Biol 2013, 82(1):165-188.
  • [23]Wildekamp RH: A World of Killies - Atlas of the Oviparous Cyprinodontiform Fishes of the World. The American Killifish Association, Elyria; 2004.
  • [24]Trauth MH, Maslin MA, Deino A, Strecker MR: Late Cenozoic moisture history of East Africa. Science 2005, 309(5743):2051-2053.
  • [25]Seehausen O: African cichlid fish: a model system in adaptive radiation research. Proc Biol Sci 2006, 273(1597):1987-1998.
  • [26]Pinton A, Agnese JF, Paugy D, Otero O: A large-scale phylogeny of Synodontis (Mochokidae, Siluriformes) reveals the influence of geological events on continental diversity during the Cenozoic. Mol Phylogenet Evol 2013, 66(3):1027-1040.
  • [27]Day JJ, Peart CR, Brown KJ, Friel JP, Bills R, Moritz T: Continental diversification of an African catfish radiation (Mochokidae: synodontis). Syst Biol 2013, 62(3):351-365.
  • [28]Lorenzen ED, Heller R, Siegismund HR: Comparative phylogeography of African savannah ungulates. Mol Ecol 2012, 21(15):3656-3670.
  • [29]Li C, Orti G, Zhang G, Lu G: A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol 2007, 7:44. BioMed Central Full Text
  • [30]Valdesalici S, Bills R, Dorn A, Reichwald K, Cellerino A: Nothobranchius niassa (Cyprinodontiformes: Nothobranchiidae), a new species of annual killifish from northern Mozambique. Icht Expl Freshw 2012, 23(1):19-28.
  • [31]Wildekamp RH, Shidlovskiy KM, Watters BR: Systematics of the Nothobranchius melanospilus species group (Cyprinodontiformes: Nothobranchiidae) with description of two new species from Tanzania and Mozambique. Icht Expl Freshw 2009, 20(3):237-254.
  • [32]Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Contreras Balderas S, Bussing W, Stiassny MJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P: Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 2008, 58(5):403-414.
  • [33]Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M, Wainwright PC: Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci U S A 2013, 110(31):12738-12743.
  • [34]Stadler T: Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A 2011, 108(15):6187-6192.
  • [35]Webb SA, Graves JA, Macias-Garcia C, Magurran AE, Foighil DO, Ritchie MG: Molecular phylogeny of the livebearing Goodeidae (Cyprinodontiformes). Mol Phylogenet Evol 2004, 30(3):527-544.
  • [36]Duerr JM, Podrabsky JE: Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol B 2010, 180(7):991-1003.
  • [37]Alda F, Reina RG, Doadrio I, Bermingham E: Phylogeny and biogeography of the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in Central America. Mol Phylogenet Evol 2013, 66(3):1011-1026.
  • [38]Roberts RB, Ser JR, Kocher TD: Sexual conflict resolved by invasion of a novel sex eterminer in Lake Malawi cichlid fishes. Science 2009, 326(5955):998-1001.
  • [39]Santos ME, Salzburger W: Evolution: how cichlids diversify. Science 2012, 338(6107):619-621.
  • [40]Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G Jr, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 2005, 307(5717):1928-1933.
  • [41]Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Baldwin J, Bloom T, Jaffe DB, Nicol R, Wilkinson J, et al.: The genomic basis of adaptive evolution in threespine sticklebacks. Nature 2012, 484(7392):55-61.
  • [42]Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR, Henning F, Meyer A: Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes.Mol Ecol 2013.
  • [43]Murphy WJ, Thomerson JE, Collier GE: Phylogeny of the Neotropical killifish family Rivulidae (Cyprinodontiformes, Aplocheiloidei) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 1999, 13(2):289-301.
  • [44]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292(5517):686-693.
  • [45]Kingston JD, Hill A, Marino BD: Isotopic evidence for neogene hominid paleoenvironments in the kenya rift valley. Science 1994, 264(5161):955-959.
  • [46]Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin JJ, Brunet M: Tectonic uplift and Eastern Africa aridification. Science 2006, 313(5792):1419-1423.
  • [47]Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ: Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc Biol Sci 2013, 280(1770):20131733.
  • [48]Mayaux P, Bartholomé E, Fritz S, Belward A: A new land-cover map of Africa for the year 2000. J Biogeo 2004, 31(6):861-877.
  • [49]Segalen L, Lee-Thorp JA, Cerling T: Timing of C4 grass expansion across sub- Saharan Africa. J Hum Evol 2007, 53(5):549-559.
  • [50]Clark PU, Archer D, Pollard D, Blum DD, Rial JA, Brovkin V, Mix AC, Pisias NG, Roy M: The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Sci Rev 2006, 25:3150-3163.
  • [51]Vbra ES: The fossil record of African Antelopes (Mamrnalia, Bovidae) in relation to human evolution and paleoclimate. In Paleoclimale and Evolution, with Emphasis on Human Origins. Edited by Vrba ES, Denton GH, Partridge TC, Burkle LH. Yale University Press, New Haven, CT; 1995:450.
  • [52]Bobe R, Behrensmeyer A: Faunal change, environmental variability and late Pliocene hominin evolution. J Hum Evol 2002, 42:475-497.
  • [53]Miller JH, Hallager S, Monfort SL, Newby J, Bishop K, Tidmus SA, Black P, Houston B, Matthee CA, Fleischer RC: Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus). Conser Genet 2011, 12:223-231.
  • [54]Dehghani R, Wanntorp L, Pagani P, Kallersjo M, Werdelin L, Veron G: Phylogeography of the white-tailed mongoose (Herpestidae, Carnivora, Mammalia) based on partial sequences of the mtDNA control region. J Zool 2008, 276:385-393.
  • [55]Polacik M, Reichard M: Diet overlap among three sympatric African annual killifish species Nothobranchius spp. from Mozambique. J Fish Biol 2010, 77(3):754-768.
  • [56]Murphy WJ, Collier GE: A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol 1997, 14(8):790-799.
  • [57]Reichwald K, Lauber C, Nanda I, Kirschner J, Hartmann N, Schories S, Gausmann U, Taudien S, Schilhabel MB, Szafranski K, Glöckner G, Schmid M, Cellerino A, Schartl M, Englert C, Platzer M: High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol 2009, 10(2):R16. BioMed Central Full Text
  • [58]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [59]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [60]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [61]Yu Y, Harris AJ, He X: S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 2010, 56(2):848-850.
  • [62]Nylander JA, Olsson U, Alstrom P, Sanmartin I: Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Syst Biol 2008, 57(2):257-268.
  文献评价指标  
  下载次数:30次 浏览次数:5次