期刊论文详细信息
BMC Neuroscience
Cerebrolysin™ efficacy in a transgenic model of tauopathy: role in regulation of mitochondrial structure
Eliezer Masliah1  Herbert Moessler2  Edith Doppler2  Marion Jech2  Philipp Novak2  Anthony Adame3  Christina Patrick3  Michael Mante3  Margarita Trejo3  Kiren Ubhi3  Edward Rockenstein3 
[1] Department of Pathology, University of California San Diego, La Jolla, CA, USA;Clinical Research & Pharmacology, EVER Neuro Pharma GmbH, Unterach, Austria;Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
关键词: Tauopathies;    Alzheimer’s disease;    Neuroprotection;    Drp-1;    GSK3β;    Tau;   
Others  :  1091640
DOI  :  10.1186/1471-2202-15-90
 received in 2014-06-03, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Background

Alzheimer’s Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that CerebrolysinTM (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it’s potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3β (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically.

Results

Compared to single Tau tg mice the Tau/GSK3β double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3β double tg mice. Interestingly, the Tau/GSK3β double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3β double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure.

Conclusions

These results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau.

【 授权许可】

   
2014 Rockenstein et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128173345233.pdf 2893KB PDF download
Figure 6. 124KB Image download
Figure 5. 74KB Image download
Figure 4. 93KB Image download
Figure 3. 105KB Image download
Figure 2. 71KB Image download
Figure 1. 113KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]DeKosky ST, Scheff SW, Styren SD: Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 1996, 5(4):417-421.
  • [2]Masliah E: Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 1995, 10:509-519.
  • [3]Masliah E, Crews L, Hansen L: Synaptic remodeling during aging and in Alzheimer’s disease. J Alzheimers Dis 2006, 9(3 Suppl):91-99.
  • [4]Masliah E: Recent advances in the understanding of the role of synaptic proteins in Alzheimer’s disease and other neurodegenerative disorders. J Alzheimers Dis 2001, 3(1):121-129.
  • [5]Scheff S, DeKosky S, Price D: Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 1990, 11:29-37.
  • [6]Terry R, Masliah E, Salmon D, Butters N, DeTeresa R, Hill R, Hansen L, Katzman R: Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30:572-580.
  • [7]Trojanowski JQ, Shin RW, Schmidt ML, Lee VM: Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 1995, 16(3):335-340. discussion 341–335
  • [8]Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM: Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 2003, 60(6):1005-1011.
  • [9]McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ: Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and pick’s disease. Arch Neurol 2001, 58(11):1803-1809.
  • [10]Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ, Foong C, White CL, Schneider JA, Kretzschmar HA, Carter D, Taylor-Reinwald L, Paulsmeyer K, Strider J, Gitcho M, Goate AM, Morris JC, Mishra M, Kwong LK, Stieber A, Xu Y, Forman MS, Trojanowski JQ, Lee VM, Mackenzie IR: TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 2007, 171(1):227-240.
  • [11]DuBoff B, Gotz J, Feany MB: Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 2012, 75(4):618-632.
  • [12]Iijima-Ando K, Sekiya M, Maruko-Otake A, Ohtake Y, Suzuki E, Lu B, Iijima KM: Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1. PLoS Genet 2012, 8(8):e1002918.
  • [13]Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E: MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 2004, 167(1):99-110.
  • [14]Zempel H, Thies E, Mandelkow E, Mandelkow EM: Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 2010, 30(36):11938-11950.
  • [15]Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L: Tau reduction prevents Abeta-induced defects in axonal transport. Science 2010, 330(6001):198.
  • [16]Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 2007, 316(5825):750-754.
  • [17]Rockenstein E, Adame A, Mante M, Larrea G, Crews L, Windisch M, Moessler H, Masliah E: Amelioration of the cerebrovascular amyloidosis in a transgenic model of Alzheimer’s disease with the neurotrophic compound cerebrolysin. J Neural Transm 2005, 112(2):269-282.
  • [18]Rockenstein E, Adame A, Mante M, Moessler H, Windisch M, Masliah E: The neuroprotective effects of Cerebrolysin in a transgenic model of Alzheimer’s disease are associated with improved behavioral performance. J Neural Transm 2003, 110(11):1313-1327.
  • [19]Rockenstein E, Mallory M, Mante M, Alford M, Windisch M, Moessler H, Masliah E: Effects of Cerebrolysin on amyloid-beta deposition in a transgenic model of Alzheimer’s disease. J Neural Transm Suppl 2002, 62:327-336.
  • [20]Alvarez XA, Cacabelos R, Laredo M, Couceiro V, Sampedro C, Varela M, Corzo L, Fernandez-Novoa L, Vargas M, Aleixandre M, Linares C, Granizo E, Muresanu D, Moessler H: A 24-week, double-blind, placebo-controlled study of three dosages of Cerebrolysin in patients with mild to moderate Alzheimer’s disease. Eur J Neurol 2006, 13(1):43-54.
  • [21]Alvarez XA, Cacabelos R, Sampedro C, Aleixandre M, Linares C, Granizo E, Doppler E, Moessler H: Efficacy and safety of Cerebrolysin in moderate to moderately severe Alzheimer’s disease: results of a randomized, double-blind, controlled trial investigating three dosages of Cerebrolysin. Eur J Neurol 2011, 18(1):59-68.
  • [22]Alvarez XA, Cacabelos R, Sampedro C, Couceiro V, Aleixandre M, Vargas M, Linares C, Granizo E, Garcia-Fantini M, Baurecht W, Doppler E, Moessler H: Combination treatment in Alzheimer’s disease: results of a randomized, controlled trial with cerebrolysin and donepezil. Curr Alzheimer Res 2011, 8(5):583-591.
  • [23]Allegri RF, Guekht A: Cerebrolysin improves symptoms and delays progression in patients with Alzheimer’s disease and vascular dementia. Drugs Today (Barc) 2012, 48(Suppl A):25-41.
  • [24]Plosker GL, Gauthier S: Cerebrolysin: a review of its use in dementia. Drugs Aging 2009, 26(11):893-915.
  • [25]Plosker GL, Gauthier S: Spotlight on cerebrolysin in dementia. CNS Drugs 2010, 24(3):263-266.
  • [26]Ubhi K, Rockenstein E, Doppler E, Mante M, Adame A, Patrick C, Trejo M, Crews L, Paulino A, Moessler H, Masliah E: Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin. Acta Neuropathol 2009, 117(6):699-712.
  • [27]Flunkert S, Hierzer M, Loffler T, Rabl R, Neddens J, Duller S, Schofield EL, Ward MA, Posch M, Jungwirth H, Windisch M, Hutter-Paier B: Elevated levels of soluble total and hyperphosphorylated tau result in early behavioral deficits and distinct changes in brain pathology in a new tau transgenic mouse model. Neurodegener Dis 2013, 11(4):194-205.
  • [28]Engel T, Goni-Oliver P, Gomez-Ramos P, Moran MA, Lucas JJ, Avila J, Hernandez F: Hippocampal neuronal subpopulations are differentially affected in double transgenic mice overexpressing frontotemporal dementia and parkinsonism linked to chromosome 17 tau and glycogen synthase kinase-3beta. Neuroscience 2008, 157(4):772-780.
  • [29]Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob AO, Mante M, Pham E, Klopstock T, Masliah E: TOM40 mediates mitochondrial dysfunction induced by alpha-synuclein accumulation in Parkinson’s disease. PLoS One 2013, 8(4):e62277.
  • [30]Reed LA, Grabowski TJ, Schmidt ML, Morris JC, Goate A, Solodkin A, Van Hoesen GW, Schelper RL, Talbot CJ, Wragg MA, Trojanowski JQ: Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 1997, 42(4):564-572.
  • [31]Saito Y, Geyer A, Sasaki R, Kuzuhara S, Nanba E, Miyasaka T, Suzuki K, Murayama S: Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology 2002, 58(5):811-813.
  • [32]Van Swieten JC, Stevens M, Rosso SM, Rizzu P, Joosse M, de Koning I, Kamphorst W, Ravid R, Spillantini MG, Niermeijer , Heutink P: Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 1999, 46(4):617-626.
  • [33]Fuster-Matanzo A, Llorens-Martin M, Sirerol-Piquer MS, Garcia-Verdugo JM, Avila J, Hernandez F: Dual effects of increased glycogen synthase kinase-3beta activity on adult neurogenesis. Hum Mol Genet 2013, 22(7):1300-1315.
  • [34]Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J: Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001, 20(1–2):27-39.
  • [35]Eckert A, Nisbet R, Grimm A, Gotz J: March separate, strike together - Role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2013, 1842:1258-1266.
  • [36]Manczak M, Reddy PH: Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 2012, 21(11):2538-2547.
  • [37]Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X: Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 2009, 29(28):9090-9103.
  • [38]Qu J, Nakamura T, Holland EA, McKercher SR, Lipton SA: S-nitrosylation of Cdk5: potential implications in amyloid-beta-related neurotoxicity in Alzheimer disease. Prion 2012, 6(4):364-370.
  • [39]Strack S, Wilson TJ, Cribbs JT: Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J Cell Biol 2013, 201(7):1037-1051.
  • [40]Chou CH, Lin CC, Yang MC, Wei CC, Liao HD, Lin RC, Tu WY, Kao TC, Hsu CM, Cheng JT, Chou AK, Lee CI, Loh JK, Howng SL, Hong YR: GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 2012, 7(11):e49112.
  • [41]Rockenstein E, Torrance M, Mante M, Adame A, Paulino A, Rose JB, Crews L, Moessler H, Masliah E: Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer’s disease. J Neurosci Res 2006, 83(7):1252-1261.
  • [42]Rockenstein E, Mante M, Adame A, Crews L, Moessler H, Masliah E: Effects of Cerebrolysin on neurogenesis in an APP transgenic model of Alzheimer’s disease. Acta Neuropathol 2007, 113(3):265-275.
  • [43]Masliah E, Diez-Tejedor E: The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs Today (Barc) 2012, 48(Suppl A):3-24.
  • [44]Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L, Masliah E: Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 2007, 27(8):1981-1991.
  • [45]Rockenstein E, McConlogue L, Tan H, Power M, Masliah E, Mucke L: Levels and alternative splicing of amyloid b protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 1995, 270:28257-28267.
  • [46]Overk CR, Kelley CM, Mufson EJ: Brainstem Alzheimer’s-like pathology in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2009, 35(3):415-425.
  • [47]Ubhi K, Rockenstein E, Mante M, Inglis C, Adame A, Patrick C, Whitney K, Masliah E: Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci 2010, 30(18):6236-6246.
  • [48]Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, Ubhi K, Ettle B, Ghassemiam M, Barbour R, Schenk D, Nuber S, Masliah E: Axonopathy in an alpha-synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal-truncated alpha-synuclein. Am J Pathol 2013, 182(3):940-953.
  • [49]Borlikova GG, Trejo M, Mably AJ, Mc Donald JM, Sala Frigerio C, Regan CM, Murphy KJ, Masliah E, Walsh DM: Alzheimer brain-derived amyloid beta-protein impairs synaptic remodeling and memory consolidation. Neurobiol Aging 2013, 34(5):1315-1327.
  文献评价指标  
  下载次数:37次 浏览次数:19次