期刊论文详细信息
BMC Genomics
Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles
Le Luo Guan2  Xin Zhao3  Frédéric Beaudoin1  Guanxiang Liang2  Eveline M Ibeagha-Awemu1  Weiwu Jin2 
[1] Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada;Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada;Department of Animal Science, McGill University, 21111 Lakeshore Road, Ste-Anne-De-Bellevue, QC H9S 3V9, Canada
关键词: Bovine mammary epithelial cells;    MicroRNA-sequencing;    Mastitis;    S. aureus;    E. coli;    microRNA;   
Others  :  1217811
DOI  :  10.1186/1471-2164-15-181
 received in 2013-10-14, accepted in 2014-02-25,  发布年份 2014
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S. aureus, two mastitis causing pathogens, is not well understood.

Results

The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with and without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria at 0, 6, 12, 24, and 48 hr was profiled using RNA-Seq. A total of 231 known bovine miRNAs were identified with more than 10 counts per million in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the abundance. One hundred and thirteen novel miRNAs were also identified and more than one third of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P < 0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to 1 miRNA for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 and let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG pathways including immune system, signal transduction, cellular process, nervous system, development and human diseases.

Conclusion

Using next-generation sequencing, our study identified a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis and development of control measures.

【 授权许可】

   
2014 Jin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708080659102.pdf 534KB PDF download
Figure 2. 53KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Hogeveen H, Huijps K, Lam TJ: Economic aspects of mastitis: new developments. N Z Vet J 2011, 59:16-23.
  • [2]Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH: Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia 2011, 16:357-372.
  • [3]Vangroenweghe F, Lamote I, Burvenich C: Physiology of the periparturient period and its relation to severity of clinical mastitis. Domest Anim Endocrinol 2005, 29:283-293.
  • [4]Ibeagha-Awemu EM, Ibeagha AE, Messier S, Zhao X: Proteomics, genomics, and pathway analyses of Escherichia coli and Staphylococcus aureus infected milk whey reveal molecular pathways and networks involved in mastitis. J Prot Res 2010, 9:4604-4619.
  • [5]Sutra L, Poutrel B: Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J Med Microbio 1994, 40:79-89.
  • [6]Buitenhuis B, Rontved CM, Edwards SM, Ingvartsen KL, Sorensen P: In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis. BMC Genomics 2011, 12:130. BioMed Central Full Text
  • [7]Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, Blum H, Seyfert H-M: Comparative kinetics of Escherichia coli- and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infect Immun 2011, 79:695-707.
  • [8]Gilbert FB, Cunha P, Jensen K, Glass EJ, Foucras G, Robert-Granié C, Rupp R, Rainard P: Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet Res 2013, 44:40. BioMed Central Full Text
  • [9]Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P: Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Diagn Lab Immunol 2004, 11:463-472.
  • [10]Lahouassa H, Moussay E, Rainard P, Riollet C: Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 2007, 38:12-21.
  • [11]Gantier MP, Sadler AJ, Williams BR: Fine-tuning of the innate immune response by microRNAs. Immunol Cell Biol 2007, 85:458-462.
  • [12]Lindsay MA: microRNAs and the immune response. Trends Immunol 2008, 29:343-351.
  • [13]Bi Y, Liu G, Yang R: MicroRNAs: novel regulators during the immune response. J Cell Physiol 2009, 218:467-472.
  • [14]Xiao C, Rajewsky K: MicroRNA control in the immune system: basic principles. Cell 2009, 136:26-36.
  • [15]Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Roce CM: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007, 179:5082-5089.
  • [16]Chen XM, Splinter PL, O’Hara SP, LaRusso NF: A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007, 282:28929-28938.
  • [17]Zhou R, Gong AY, Eischeid AN, Chen XM: miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog 2012, 8:e1002702.
  • [18]Zhou R, O’Hara SP, Chen XM: MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol 2011, 8:371-379.
  • [19]Pareek R, Wellnitz O, Van Dorp R, Burton J, Kerr D: Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells. J Appl Genet 2005, 46:171-177.
  • [20]Griesbeck-Zilch B, Meyer HH, Kuhn CH, Schwerin M, Wellnitz O: Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. J Dairy Sci 2008, 91:2215-2224.
  • [21]Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Bannerman DD, Paape MJ, Zhao X: Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Vet Res 2008, 39:11.
  • [22]Dilda F, Gioia G, Pisani L, Restelli L, Lecchi C, Albonico F, Bronzo V, Mortarino M, Ceciliani F: Escherichia coli lipopolysaccharides and Staphylococcus aureus enterotoxin B differentially modulate inflammatory microRNAs in bovine monocytes. Vet J 2012, 192:514-516.
  • [23]Naeem A, Zhong K, Moisá SJ, Drackley JK, Moyes KM, Loor JJ: Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci 2012, 95:6397-6408.
  • [24]Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10:126-139.
  • [25]Lawless N, Foroushani ABK, McCabe MS, O’Farrelly C, Lynn DJ: Next generation sequencing reveals the expression of a unique miRNA profile in response to a Gram-positive bacterial infection. PLoS One 2013, 8:e57543.
  • [26]Pritchard CC, Cheng HH, Tewari M: MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012, 13:358-369.
  • [27]Glazov EA, Kongsuwan K, Assavalapsakul W, Horwood PF, Mitter N, Mahony TJ: Repertoire of bovine miRNA and miRNA-Like small regulatory RNAs expressed upon viral infection. PLoS One 2009, 4:e6349.
  • [28]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40:37-52.
  • [29]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
  • [30]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-D157.
  • [31]Mathelier A, Carbone A: MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 2010, 26:2226-2234.
  • [32]Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM: miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 2011, 39:W132-W138.
  • [33]Hendrix D, Levine M, Shi W: miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 2010, 11:R39. BioMed Central Full Text
  • [34]Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T: A uniform system for microRNA annotation. RNA 2003, 9:277-279.
  • [35]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-D158.
  • [36]Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D: Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 2009, 10:443. BioMed Central Full Text
  • [37]Liu PT, Wheelwright M, Teles R, Komisopoulou E, Edfeldt K, Ferguson B, Mehta MD, Vazirnia A, Rea TH, Sarno EN, Graeber TG, Modlin RL: MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med 2012, 18:267-273.
  • [38]Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA: Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010, 11:141-147.
  • [39]Narducci MG, Arcelli D, Picchio MC, Lazzeri C, Pagani E, Sampogna F, Scala E, Fadda P, Cristofoletti C, Facchiano A, Frontani M, Monopoli A, Ferracin M, Negrini M, Lombardo GA, Caprini E, Russo G: MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome. Cell Death Dis 2011, 2:e151.
  • [40]Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M: Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci 2012, 95:4831-4841.
  • [41]Jennewein C, von Knethen A, Schmid T, Brune B: MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 2010, 285:11846-11853.
  • [42]López-Ramírez MA, Domínguez-Monzón G, Vergara P, Segovia J: Gas1 reduces Ret tyrosine 1062 phosphorylation and alters GDNF-mediated intracellular signaling. Int J Dev Neurosci 2008, 26:497-503.
  • [43]Martinelli DC, Fan CM: The role of Gas1 in embryonic development and its implications for human disease. Cell Cycle 2007, 6:2650-2655.
  • [44]Zhang B, Gojo I, Fenton RG: Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 2002, 99:1885-1893.
  • [45]Rajalingam K, Sharma M, Lohmann C, Oswald M, Thieck O, Froelich CJ, Rudel T: Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS One 2008, 3:e3102.
  • [46]Chen L, Tanriover G, Yano H, Friedlander R, Louvi A, Gunel M: Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke 2009, 40:1474-1481.
  • [47]Furci L, Schena E, Miotto P, Cirillo DM: Alteration of human macrophages microRNA expression profile upon infection with Mycobacterium tuberculosis. Inter J Mycobacterio 2013, 2:128-134.
  • [48]Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang C-Y: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010, 20:1128-1137.
  • [49]Li Z, Liu H, Jin X, Lo L, Liu J: Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 2012, 13:731. BioMed Central Full Text
  • [50]Hsieh C-H, Rau C-S, Jeng J, Chen Y-C, Lu T-H, Wu C-J, Wu Y-C, Tzeng S-L, Yang J: Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides. J Biomed Sci 2012, 19:69. BioMed Central Full Text
  • [51]Swanson KM, Stelwagen K, Dobson J, Henderson HV, Davis SR, Farr VC, Singh K: Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J Dairy Sci 2009, 92:117-129.
  • [52]Hosseini A, Sharma R, Bionaz M, Loor JJ: Transcriptomics comparisons of mac-T cells versus mammary tissue during late pregnancy and peak lactation. Adv Dairy Res 2013, 1:103.
  • [53]Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S, Lobie PE, Zhu T: c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem 2013, 288:18121-18133.
  • [54]Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J: Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 2011, 30:1977-1989.
  • [55]Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [56]Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A: Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 2013, 41:D226-D232.
  • [57]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [58]Jin W, Grant J, Stothard P, Moore S, Guan L: Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Mole Biol 2009, 10:1-11. BioMed Central Full Text
  • [59]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  文献评价指标  
  下载次数:10次 浏览次数:17次