期刊论文详细信息
BMC Genomics
Core and accessory genome architecture in a group of Pseudomonas aeruginosa Mu-like phages
Gabriel Guarneros1  Guillermo Mendoza-Hernández2  Adrián Cazares1 
[1] Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV IPN), Mexico City, Mexico;Departamento de Bioquímica, Facultad de Medicina de la Universidad Nacional Autónoma de México, Mexico City, Mexico
关键词: Horizontal gene transfer;    Phage adaptation;    Mu-like phages;    Pangenome;    Comparative genomics;    Phage;   
Others  :  1122695
DOI  :  10.1186/1471-2164-15-1146
 received in 2014-08-26, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution.

Results

Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named “core genome”, and the second group, containing mostly short ORFs without assigned functions was called “accessory genome”. Like in other phage groups, variable genes are confined to specific regions in the genome.

Conclusion

Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.

【 授权许可】

   
2014 Cazares et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214025119137.pdf 1663KB PDF download
Figure 6. 42KB Image download
Figure 5. 33KB Image download
Figure 4. 36KB Image download
Figure 3. 74KB Image download
Figure 2. 113KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Medigue C, Moszer I: Annotation, comparison and databases for hundreds of bacterial genomes. Res Microbiol 2007, 158(10):724-736.
  • [2]Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S: Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 2008, 105(8):3100-3105.
  • [3]Hendrix RW, Lawrence JG, Hatfull GF, Casjens S: The origins and ongoing evolution of viruses. Trends Microbiol 2000, 8(11):504-508.
  • [4]Comeau AM, Bertrand C, Letarov A, Tetart F, Krisch HM: Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 2007, 362(2):384-396.
  • [5]Labrie SJ, Frois Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, Gearin G, Zeng Q, Fitzgerald M, Henn MR, Chisholm SW: Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol 2013, 15(5):1356-1376.
  • [6]Sullivan MB, Huang KH, Ignacio Espinoza JC, Berlin AM, Kelly L, Weigele PR, DeFrancesco AS, Kern SE, Thompson LR, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne MS, Henn MR, Chisholm SW: Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 2010, 12(11):3035-3056.
  • [7]Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW: Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 2000, 299(1):27-51.
  • [8]Hendrix RW: Bacteriophage genomics. Curr Opin Microbiol 2003, 6(5):506-511.
  • [9]Hendrix RW: Bacteriophages: evolution of the majority. Theor Popul Biol 2002, 61(4):471-480.
  • [10]Wang PW, Chu L, Guttman DS: Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 2003, 186(2):400-410.
  • [11]Roncero C, Darzins A, Casadaban MJ: Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption. J Bacteriol 1990, 172(4):1899-1904.
  • [12]Braid MD, Silhavy JL, Kitts CL, Cano RJ, Howe MM: Complete genomic sequence of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. J Bacteriol 2004, 186(19):6560-6574.
  • [13]Morgan GJ, Hatfull GF, Casjens S, Hendrix RW: Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 2002, 317(3):337-359.
  • [14]Sepulveda-Robles O, Kameyama L, Guarneros G: High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 2012, 78(12):4510-4515.
  • [15]Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Deziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM: Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 2006, 7(10):R90. BioMed Central Full Text
  • [16]Chung IY, Cho YH: Complete genome sequences of two Pseudomonas aeruginosa temperate phages, MP29 and MP42, which lack the phage-host CRISPR interaction. J Virol 2012, 86(15):8336.
  • [17]Kim S, Rahman M, Kim J: Complete genome sequence of Pseudomonas aeruginosa lytic bacteriophage PA1O which resembles temperate bacteriophage D3112. J Virol 2012, 86(6):3400-3401.
  • [18]Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA: Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 2009, 191(1):210-219.
  • [19]Heo YJ, Chung IY, Choi KB, Lau GW, Cho YH: Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 2007, 153(Pt 9):2885-2895.
  • [20]Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC: Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res 2009, 19(1):12-23.
  • [21]Stewart RM, Wiehlmann L, Ashelford KE, Preston SJ, Frimmersdorf E, Campbell BJ, Neal TJ, Hall N, Tuft S, Kaye SB, Winstanley C: Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol 2011, 49(3):993-1003.
  • [22]Soares-Castro P, Marques D, Demyanchuk S, Faustino A, Santos PM: Draft genome sequences of two Pseudomonas aeruginosa clinical isolates with different antibiotic susceptibilities. J Bacteriol 2011, 193(19):5573.
  • [23]Miyoshi Akiyama T, Kuwahara T, Tada T, Kitao T, Kirikae T: Complete genome sequence of highly multidrug-resistant Pseudomonas aeruginosa NCGM2.S1, a representative strain of a cluster endemic to Japan. J Bacteriol 2011, 193(24):7010.
  • [24]Bidnenko EM, Akhverdian VZ, Krylov VN: [Transcriptional mapping and study of transcription regulation of the Pseudomonas aeruginosa phage-transposon D3112]. Genetika 2000, 36(12):1645-1655.
  • [25]Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT: Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 2011, 421(2):211-221.
  • [26]Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma J, Young R: Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 2004, 340(1):49-65.
  • [27]Kahmann R, Kamp D: Nucleotide sequences of the attachment sites of bacteriophage Mu DNA. Nature 1979, 280(5719):247-250.
  • [28]van Drunen CM, Mientjes E, van Zuylen O, van de Putte P, Goosen N: Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. Nucleic Acids Res 1994, 22(5):773-779.
  • [29]Lee I, Harshey RM: Importance of the conserved CA dinucleotide at Mu termini. J Mol Biol 2001, 314(3):433-444.
  • [30]Lee I, Harshey RM: The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly. J Mol Biol 2003, 330(2):261-275.
  • [31]Tettelin H, Riley D, Cattuto C, Medini D: Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 2008, 11(5):472-477.
  • [32]Cumby N, Davidson AR, Maxwell KL: The moron comes of age. Bacteriophage 2012, 2(4):225-228.
  • [33]Daubin V, Lerat E, Perriere G: The source of laterally transferred genes in bacterial genomes. Genome Biol 2003, 4(9):R57. BioMed Central Full Text
  • [34]Lavigne R, Ceyssens PJ, Robben J: Phage proteomics: applications of mass spectrometry. Methods Mol Biol 2009, 502:239-251.
  • [35]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5(4):725-738.
  • [36]Iwai H, Forrer P, Pluckthun A, Guntert P: NMR solution structure of the monomeric form of the bacteriophage lambda capsid stabilizing protein gpD. J Biomol NMR 2005, 31(4):351-356.
  • [37]Pell LG, Liu A, Edmonds L, Donaldson LW, Howell PL, Davidson AR: The X-ray crystal structure of the phage lambda tail terminator protein reveals the biologically relevant hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages. J Mol Biol 2009, 389(5):938-951.
  • [38]Barbirz S, Muller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R: Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 2008, 69(2):303-316.
  • [39]Muller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U: An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 2008, 16(5):766-775.
  • [40]Xiang Y, Leiman PG, Li L, Grimes S, Anderson DL, Rossmann MG: Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol Cell 2009, 34(3):375-386.
  • [41]Rodriguez Rubio L, Martinez B, Donovan DM, Rodriguez A, Garcia P: Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 2013, 39(4):427-434.
  • [42]Smith DL, Rooks DJ, Fogg PC, Darby AC, Thomson NR, McCarthy AJ, Allison HE: Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 2012, 13:311. BioMed Central Full Text
  • [43]Gilcrease EB, Winn-Stapley DA, Hewitt FC, Joss L, Casjens SR: Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J Bacteriol 2005, 187(6):2050-2057.
  • [44]Wendt JL, Feiss M: A fragile lattice: replacing bacteriophage lambda’s head stability gene D with the shp gene of phage 21 generates the Mg2 + -dependent virus, lambda shp. Virology 2004, 326(1):41-46.
  • [45]Hernando Perez M, Lambert S, Nakatani Webster E, Catalano CE, De Pablo PJ: Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 2014, 5:4520.
  • [46]Ishii T, Yanagida M: The two dispensable structural proteins (soc and hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro. J Mol Biol 1977, 109(4):487-514.
  • [47]Steven AC, Greenstone HL, Booy FP, Black LW, Ross PD: Conformational changes of a viral capsid protein. Thermodynamic rationale for proteolytic regulation of bacteriophage T4 capsid expansion, co-operativity, and super-stabilization by soc binding. J Mol Biol 1992, 228(3):870-884.
  • [48]Martinsohn JT, Radman M, Petit MA: The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genet 2008, 4(5):e1000065.
  • [49]Bobay LM, Touchon M, Rocha EP: Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability. PLoS Genet 2013, 9(9):e1003825.
  • [50]Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR: Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013, 493(7432):429-432.
  • [51]Pawluk A, Bondy Denomy J, Cheung VH, Maxwell KL, Davidson AR: A New group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 2014, 5(2):e00896-14.
  • [52]Tock MR, Dryden DT: The biology of restriction and anti-restriction. Curr Opin Microbiol 2005, 8(4):466-472.
  • [53]Comeau AM, Krisch HM: War is peace–dispatches from the bacterial and phage killing fields. Curr Opin Microbiol 2005, 8(4):488-494.
  • [54]Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L: The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev 1992, 6(3):497-510.
  • [55]Xu J, Hendrix RW, Duda RL: Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 2004, 16(1):11-21.
  • [56]Sambrook J, Russell DW: Molecular Cloning : A Laboratory Manual. 3rd edition. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001.
  • [57]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [58]Borodovsky M, Mills R, Besemer J, Lomsadze A: Prokaryotic gene prediction using GeneMark and GeneMark.hmm. Curr Protoc Bioinform 2003, 4:4-5.
  • [59]Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL: A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics 2001, 17(12):1123-1130.
  • [60]Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, Parkhill J, Rajandream MA: Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008, 24(23):2672-2676.
  • [61]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [62]Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, et al.: InterPro: the integrative protein signature database. Nucleic Acids Res 2009, 37(Database issue):D211-D215.
  • [63]Marchler Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2010, 39(Database issue):D225-D229.
  • [64]Reese MG: Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001, 26(1):51-56.
  • [65]Munch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, Jahn D: Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 2005, 21(22):4187-4189.
  • [66]Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH: Open mass spectrometry search algorithm. J Proteome Res 2004, 3(5):958-964.
  • [67]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [68]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5(6):e11147.
  文献评价指标  
  下载次数:1次 浏览次数:4次