期刊论文详细信息
BMC Evolutionary Biology
Conquering the Sahara and Arabian deserts: systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae)
Salvador Carranza7  Michael Robinson1  Roberto Sindaco2  Sherif Baha El Din6  Petros Lymberakis5  José Carlos Brito4  Philippe Geniez3  Pierre-André Crochet9  Edwin Nicholas Arnold8  Margarita Metallinou7 
[1] Sultan Qaboos University, Department of Biology, College of Science, Al-Khod, P.O. Box 36, Muscat, Sultanate of Oman;Museo Civico de Storia Naturale, via San Francesco di Sales 188, I-10022, Carmagnola, Italy;EPHE-UMR, Centre d'Ecologie Fontionnelle et Evolutive, 1919 Route de Mende, 34293, Montpellier cedex 5, France;CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas 4485-661, Vairão, Portugal;Natural History Museum of Crete, University of Crete, Knosou Av, P.O. Box 2208, 71409, Heraklion, Greece;Nature Conservation Sector, Egyptian Environmental Affairs Agency, 3 Abdalla El Katib, Apt. 3, Cairo, Dokki, Egypt;Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain;The Natural History Museum, Cromwell Road, SW7 5BD, London, UK;CNRS-UMR 5175 Centre d'Ecologie Fontionnelle et Evolutive, 1919 Route de Mende, 34293, Montpellier cedex 5, France
关键词: Red Sea;    Desert;    Biogeography;    Phylogeny;    North Africa;    Arabia;    Gekkonidae;    Stenodactylus;   
Others  :  1130400
DOI  :  10.1186/1471-2148-12-258
 received in 2012-09-20, accepted in 2012-12-03,  发布年份 2012
PDF
【 摘 要 】

Background

The evolutionary history of the biota of North Africa and Arabia is inextricably tied to the complex geological and climatic evolution that gave rise to the prevalent deserts of these areas. Reptiles constitute an exemplary group in the study of the arid environments with numerous well-adapted members, while recent studies using reptiles as models have unveiled interesting biogeographical and diversification patterns. In this study, we include 207 specimens belonging to all 12 recognized species of the genus Stenodactylus. Molecular phylogenies inferred using two mitochondrial (12S rRNA and 16S rRNA) and two nuclear (c-mos and RAG-2) markers are employed to obtain a robust time-calibrated phylogeny, as the base to investigate the inter- and intraspecific relationships and to elucidate the biogeographical history of Stenodactylus, a genus with a large distribution range including the arid and hyper-arid areas of North Africa and Arabia.

Results

The phylogenetic analyses of molecular data reveal the existence of three major clades within the genus Stenodactylus, which is supported by previous studies based on morphology. Estimated divergence times between clades and sub-clades are shown to correlate with major geological events of the region, the most important of which is the opening of the Red Sea, while climatic instability in the Miocene is hypothesized to have triggered diversification. High genetic variability is observed in some species, suggesting the existence of some undescribed species. The S. petrii - S. stenurus species complex is in need of a thorough taxonomic revision. New data is presented on the distribution of the sister species S. sthenodactylus and S. mauritanicus.

Conclusions

The phylogenetic hypothesis for the genus Stenodactylus presented in this work permits the reconstruction of the biogeographical history of these common desert dwellers and confirms the importance of the opening of the Red Sea and the climatic oscillations of the Miocene as major factors in the diversification of the biota of North Africa and Arabia. Moreover, this study traces the evolution of this widely distributed and highly specialized group, investigates the patterns of its high intraspecific diversity and elucidates its systematics.

【 授权许可】

   
2012 Metallinou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226220527448.pdf 1889KB PDF download
Figure 4. 44KB Image download
Figure 3. 114KB Image download
Figure 2. 85KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bosworth W, Huchon P, McClay K: The Red Sea and Gulf of Aden Basins. J Afr Earth Sci 2005, 43:334-378.
  • [2]Carranza S, Arnold EN, Geniez P, Roca J, Mateo J: Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara desert. Mol Phylogenet Evol 2008, 46:1071-1094.
  • [3]Dean WRJ: Nomadic Desert Birds. Berlin, Heidelberg, New York: Springer Verlag; 2004.
  • [4]Flower BP, Kennett JP: The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 1994, 108:537-555.
  • [5]Griffin DL: Aridity and humidity: two aspects of the late Miocene climate of North Africa and the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 2002, 182:65-91.
  • [6]Guiraud R, Bosworth W, Thierry J, Delplanque A: Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 2005, 43:83-143.
  • [7]Lourenço W, Duhem B: Saharo-Sindian buthid scorpions; description of two new genera and species from Occidental Sahara and Afghanistan. ZooKeys 2009, 14:37-54.
  • [8]Quezel P: Analysis of the flora of Mediterranean and Saharan Africa. Ann Mo Bot Gard 1978, 65:479-534.
  • [9]Yom-Tov Y: Character displacement in the Psammophile Gerbillidae of Israel. Oikos 1991, 60:173-179.
  • [10]Haq BU, Hardenbol J, Vail PR: Chronology of fluctuating sea levels since the Triassic. Science 1987, 235:1156-1167.
  • [11]Fernandes CA, Rohling EJ, Siddall M: Absence of post-Miocene Red Sea land bridges: biogeographic implications. J Biogeogr 2006, 33:961-966.
  • [12]Harzhauser M, Kroh A, Mandic O, Piller WE, Göhlich U, Reuter M, Berning B: Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger-A Journal of Comparative Zoology 2007, 246:241-256.
  • [13]Pook CE, Joger U, Stümpel N, Wüster W: When continents collide: phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: Viperidae). Mol Phylogenet Evol 2009, 53:792-807.
  • [14]Zhou L, Su YCF, Thomas DC, Saunders RMK: 'Out-of-Africa' dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). J Biogeogr 2012, 39:322-335.
  • [15]Rögl F: Paleogeographic Considerations For Mediterranean And Paratethys Seaways (Oligocene And Miocene). Wien: Annalen des Naturhistorischen Museums in; 1998. 99A: 279-331
  • [16]Kroepelin S: Revisiting the age of the Sahara desert. Science 2006, 312:1138-1139.
  • [17]Schuster M: Revisiting the age of the Sahara Desert. Science 2006, 312:1138-1139.
  • [18]Schuster M, Duringer P, Ghienne J-F, Vignaud P, Mackaye HT, Likius A, Brunet M: The age of the Sahara desert. Science 2006, 311:821.
  • [19]Swezey CS: Revisiting the age of the Sahara desert. Science 2006, 312:1138-1139.
  • [20]Douady CJ, Catzeflis F, Raman J, Springer MS, Stanhope MJ: The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc Natl Acad Sci 2003, 100:8325-8330.
  • [21]Fu J: Toward the phylogeny of the family Lacertidae–Why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol J Linn Soc 2000, 71:203-217.
  • [22]Guillaumet A, Crochet PA, Pons JM: Climate-driven diversification in two widespread Galerida larks. BMC Evol Biol 2008, 8:32. BioMed Central Full Text
  • [23]Camargo A, Sinervo B, Sites JW Jr: Lizards as model organisms for linking phylogeographic and speciation studies. Mol Ecol 2010, 19:3250-3270.
  • [24]Kapli P, Lymberakis P, Poulakakis N, Mantziou G, Parmakelis A, Mylonas M: Molecular phylogeny of three Mesalina (Reptilia: Lacertidae) species (M. guttulata, M. brevirostris and M. bahaeldini) from North Africa and the Middle East: another case of paraphyly? Mol Phylogenet Evol 2008, 49:102-110.
  • [25]Amer SAM, Kumazawa Y: Mitochondrial DNA sequences of the Afro-Arabian spiny-tailed lizards (genus Uromastyx; family Agamidae): phylogenetic analyses and evolution of gene arrangements. Biol J Linn Soc 2005, 85:247-260.
  • [26]Carranza S, Arnold EN, Mateo JA, Geniez P: Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 2002, 23:244-256.
  • [27]Carranza S, Arnold EN, Pleguezuelos JM: Phylogeny, biogeography, and evolution of two Mediterranean snakes, Malpolon monspessulanus and Hemorrhois hippocrepis (Squamata, Colubridae), using mtDNA sequences. Mol Phylogenet Evol 2006, 40:532-546.
  • [28]Fonseca MM, Brito JC, Rebelo H, Kalboussi M, Larbes S, Carretero MA, Harris DJ: Genetic variation among spiny-footed lizards in the Acanthodactylus pardalis group from North Africa. African Zoology 2008, 43:8-15.
  • [29]Gonçalves DV, Brito JC, Crochet PA, Geniez P, Padial JM, Harris DJ: Phylogeny of North African Agama lizards (Reptilia: Agamidae) and the role of the Sahara desert in vertebrate speciation. Mol Phylogenet Evol 2012, 64:582-591.
  • [30]Fitzinger LJ: Neue Classification Der Reptilien Nach Ihren Natürlichen Verwandtschaften: Nebst Einer Verwandtschafts-Tafel Und Einem Verzeichnisse Der Reptilien-Sammlung Des KK Zoologischen Museum's Zu Wien. Wien: JG Heubner; 1826.
  • [31]Arnold EN: Reptiles of Saudi Arabia: a review of the lizard genus Stenodactylus (Reptilia: Gekkonidae). Fauna of Saudia Arabia 1980, 2:368-404.
  • [32]Arnold EN: Little-known geckoes (Reptilia: Gekkonidae) from Arabia with descriptions of two new species from the Sultanate of Oman. The Scientific Results of the Oman Flora and Fauna Survey 1975, 1977:81-110.
  • [33]Sindaco R, Jeremcenko VK: The Reptiles Of The Western Palearctic. Latina (Italy): Edizioni Belvedere; 2008.
  • [34]Arnold EN: Ecology of lowland lizards in the eastern United Arab Emirates. J Zool 1984, 204:329-354.
  • [35]Blanford WT: Descriptions of new reptilia and amphibia from Persia and Baluchistan. The Annals and Magazine of Natural History, London 1874, 4:31-35.
  • [36]Anderson J: A Contribution To The Herpetology Of Arabia: With A Preliminary List Of The Reptiles And Batrachians Of Egypt. London: RH Porter; 1896.
  • [37]Haas G: Some amphibians and reptiles from Arabia. Proc Calif Acad Sci 1957, 29:47-86.
  • [38]Bauer AM, Russell AP: Pedal specialisations in dune-dwelling geckos. J Arid Environ 1991, 20:43-62.
  • [39]Kluge AG: Higher taxonomic categories of gekkonid lizards and their evolution. Bull Am Mus Nat Hist 1967, 135:1-60.
  • [40]Fujita MK, Papenfuss TJ: Molecular systematics of Stenodactylus (Gekkonidae), an Afro-Arabian gecko species complex. Mol Phylogenet Evol 2011, 58:71-75.
  • [41]Arnold EN: Relationships, evolution and biogeography of Semaphore geckos, Pristurus (Squamata, Sphaerodactylidae) based on morphology. Zootaxa 2009, 2060:1-21.
  • [42]Arnold EN, Vasconcelos R, Harris DJ, Mateo JA, Carranza S: Systematics, biogeography and evolution of the endemic Hemidactylus geckos (Reptilia, Squamata, Gekkonidae) of the Cape Verde Islands: based on morphology and mitochondrial and nuclear DNA sequences. Zoologica Scripta 2008, 37:619-636.
  • [43]Carranza S, Arnold EN: Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol Phylogenet Evol 2006, 38:531-545.
  • [44]Carranza S, Arnold EN: A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa 2012, 3378:1-95.
  • [45]Carranza S, Arnold EN, Mateo JA, López-Jurado LF: Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proc R Soc London, Ser B 2000, 267:637.
  • [46]Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM: Coming to America: multiple origins of New World geckos. J Evol Biol 2011, 24:231-244.
  • [47]Feng J, Han D, Bauer AM, Zhou K: Interrelationships among Gekkonid Geckos inferred from mitochondrial and nuclear gene sequences. Zoolog Sci 2007, 24:656-665.
  • [48]Gamble T, Bauer AM, Greenbaum E, Jackman TR: Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zoologica Scripta 2008, 37:355-366.
  • [49]Han D, Zhou K, Bauer AM: Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biol J Linn Soc 2004, 83:353-368.
  • [50]Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S: Geneious v5. 1. 2010. Available from http://www.geneious.com webcite
  • [51]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [52]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [53]Akaike H: Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory. Edited by Petrov BN, Csaki F. Budapest (Hungary): Akademiai Kiado; 1973:267-281.
  • [54]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253.
  • [55]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [56]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [57]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688.
  • [58]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.
  • [59]Stephens M, Scheet P: Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005, 76:449-462.
  • [60]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68:978-989.
  • [61]Flot JF: Seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 2010, 10:162-166.
  • [62]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [63]Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002, 51:492.
  • [64]Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114-1116.
  • [65]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17:1246.
  • [66]Suchard MA, Weiss RE, Sinsheimer JS: Models for estimating bayes factors with applications to phylogeny and tests of monophyly. Biometrics 2005, 61:665-673.
  • [67]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [68]Rambaut A, Drummond AJ: Tracer v1. 4. 2007. [http://beast.bio.ed.ac.uk/Tracer webcite]
  • [69]Ho SYW, Phillips MJ, Cooper A, Drummond AJ: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005, 22:1561-1568.
  • [70]Gamble T, Bauer AM, Greenbaum E, Jackman TR: Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J Biogeogr 2008, 35:88-104.
  • [71]Vasconcelos R, Carranza S, Harris DJ: Insight into an island radiation: the Tarentola geckos of the Cape Verde archipelago. J Biogeogr 2010, 37:1047-1060.
  • [72]Agustí J, Cabrera L, Garcés M, Krijgsman W, Oms O, Parés JM: A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Science Reviews 2001, 52:247-260.
  • [73]Müller J: A new fossil species of Euleptes from the early Miocene of Montaigu, France (Reptilia, Gekkonidae). Amphibia-Reptilia 2001, 22:341-348.
  • [74]Abdrakhmatov KY, Aldazhanov SA, Hager BH, Hamburger MW, Herring TA, Kalabaev KB, Makarov VI, Molnar P, Panasyuk SV, Prilepin MT: Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature 1996, 384:450-453.
  • [75]Macey JR, Wang Y, Ananjeva NB, Larson A, Papenfuss TJ: Vicariant patterns of fragmentation among Gekkonid lizards of the Genus Teratoscincus produced by the Indian collision: a molecular phylogenetic perspective and an area cladogram for Central Asia. Mol Phylogenet Evol 1999, 12:320-332.
  • [76]Tapponnier P, Mattauer M, Proust F, Cassaigneau C: Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan. Earth Planet Sci Lett 1981, 52:355-371.
  • [77]Guillou H, Carracedo JC, Torrado FP, Badiola ER: K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 1996, 73:141-155.
  • [78]Arnold EN, Arribas O, Carranza S: Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 2007, 1430:1-86.
  • [79]Brown RP, Yang Z: Bayesian dating of shallow phylogenies with a relaxed clock. Syst Biol 2010, 59:119.
  • [80]Cox SC, Carranza S, Brown RP: Divergence times and colonization of the Canary Islands by Gallotia lizards. Mol Phylogenet Evol 2010, 56:747-757.
  • [81]Maddison DR, Maddison WP: MacClade 4.0. Sunderland, Massachusetts: Sinauer; 2000.
  • [82]Maddison WP, Maddison DR: Mesquite: A Modular System For Evolutionary Analysis. Version 2.73. http://mesquiteproject.org webcite
  • [83]Leviton AE, Anderson SC: Survey of the reptiles of the Sheikhdom of Abu Dhabi, Arabian Peninsula. Part II. Systematic account of the collection of reptiles made in the Sheikhdom of Abu Dhabi by John Gasperetti. Proc Calif Acad Sci 1967, 35:157-192.
  • [84]Haas G: Two collections of Reptiles from Iraq, with descriptions of two new forms. Copeia 1952, 1952:20-22.
  • [85]Murray JA: Additions to the present knowledge of the vertebrate Zoology of Persia. The Annals and Magazine of Natural History 1884, 14:97-106.
  • [86]Werner F: Allerlei aus dem Kriechtierleben im Käfig. II. Zoologischer Garten, Frankfurt am Main 1899, 40:12-24.
  • [87]Guichenot AA: Histoire Naturelle Des Reptiles Et Des Poissons. Paris: Imprimerie nationale; 1850.
  • [88]Gardner RAM: Aeolianites and marine deposits of the Wahiba Sands: character and palaeoenvironments. The Journal of Oman Studies 1988, 3:1985-1987.
  • [89]Preusser F, Radies D, Driehorst F, Matter A: Late Quaternary history of the coastal Wahiba Sands, Sultanate of Oman. J Quat Sci 2005, 20:395-405.
  • [90]Preusser F, Radies D, Matter A: A 160,000-year record of Dune development and atmospheric circulation in Southern Arabia. Science 2002, 296:2018-2020.
  • [91]Gallagher MD, Arnold EN: Reptiles and amphibians from the Wahiba Sands, Oman. J Oman Stud, Spec Rep 1988, 3:405-413.
  • [92]Blanford WT: Descriptions of new lizards from Persia and Baluchistan. Ann Mag Nat Hist 1874, 13:453-455.
  • [93]Garzanti E, Andò S, Vezzoli G, Dell'era D: From rifted margins to foreland basins: investigating provenance and sediment dispersal across desert Arabia (Oman, U.A.E.). J Sediment Res 2003, 73:572-588.
  • [94]Knowles LL, Carstens BC: Delimiting species without monophyletic gene trees. Syst Biol 2007, 56:887-895.
  • [95]Werner F: Reptilien, Batrachier und Fische von Tripolis und Barka. Zoologische Jahrbucher Abteilung fur Systematik, Geographie und Biologie der Tiere 1909, 27:595-646.
  • [96]Kratochvil L, Frynta D, Moravec J: Third Stenodactylus in Africa: return of the forgotten form Stenodactylus stenurus. Israel Journal of Zoology 2001, 47:99-110.
  • [97]Barbour T: Notes on some reptiles from Sinai and Syria. Proceedings of the New England Zoological Club 1914, 5:73-92.
  • [98]Baha El Din S: A Guide to the Reptiles and Amphibians of Egypt. Cairo and New York: The American University in Cairo Press, xvi; 2006.
  • [99]Loveridge A: Revision of the African lizards of the family Gekkonidae. Bulletin of the Mus Comp Zool, Harvard 1947, 98:1-469.
  • [100]Loveridge A: Checklist of the reptiles and amphibians of East Africa. Bulletin of The Museum of Comparative Zoology 1957, 117:151-362.
  • [101]Menzies MA, Baker J, Bosence D, Dart C, Davison I, Hurford A, Al'Kadasi M, McClay K, Nichols G, Al'Subbary A, Yelland A: The timing of magmatism, uplift and crustal extension: preliminary observations from Yemen. Geological Society, London, Special Publications 1992, 68:293-304.
  • [102]Autin J, Leroy S, Beslier MO, DíAcremont E, Razin P, Ribodetti A, Bellahsen N, Robin C, Al Toubi K: Continental break up history of a deep magma poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman). Geophys J Int 2010, 180:501-519.
  • [103]Arnold EN, Robinson MD, Carranza S: A preliminary analysis of phylogenetic relationships and biogeography of the dangerously venomous Carpet Vipers, Echis (Squamata, Serpentes, Viperidae) based on mitochondrial DNA sequences. Amphibia-Reptilia 2009, 30:273-282.
  • [104]Joger U: Phylogenetic analysis of Uromastyx lizards, based on albumin immunological distances. In Studies in Herpetology. Edited by Rocek Z. Bonn, Germany: Societas Europaea Herpetologica; 1986:187-192.
  • [105]Girdler RW: The Afro-Arabian rift system - an overview. Tectonophysics 1991, 197:139-153.
  • [106]Huang Y, Clemens SC, Liu W, Wang Y, Prell WL: Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 2007, 35:531-534.
  • [107]Friend PF: Rivers of the Lower Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates. In Fossil Vertebrates Of Arabia, With Emphasis On The Late Miocene Faunas, Geology, And Palaeoenvironments Of The Emirate Of Abu Dhabi, United Arab Emirates. New Haven, Connecticut: Yale University Press; 1999:38-49.
  • [108]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 2001, 292:686-693.
  • [109]Paulo OS, Dias C, Bruford MW, Jordan WC, Nichols RA: The persistence of Pliocene populations through the Pleistocene climatic cycles: evidence from the phylogeography of an Iberian lizard. Proc R Soc London, Ser B 2001, 268:1625-1630.
  • [110]Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC: Buffered tree population changes in a quaternary refugium: evolutionary implications. Science 2002, 297:2044-2047.
  • [111]Bons J, Geniez P: Amphibians And Reptiles Of Morocco. Barcelona: Asociación herpetológica Española; 1996.
  • [112]Schleich HH, Kästle W, Kabisch K: Amphibians And Reptiles Of North Africa: Biology, Systematics, Field Guide. Königstein, Germany: Koeltz Scientific Books; 1996.
  文献评价指标  
  下载次数:19次 浏览次数:18次