期刊论文详细信息
BMC Structural Biology
Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family
Wyatt W Yue2  Udo Oppermann3  Catherine Vénien-Bryan1  Kathryn L Kavanagh2  Frank von Delft2  Antonio De Riso1  Ewa S Pilka2  Apirat Chaikuad2 
[1] Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford, OX1 3QU, UK;Structural Genomics Consortium, Old Road Research Campus Building, Oxford OX3 7DQ, UK;Botnar Research Centre, Oxford Biomedical Research Unit, Oxford, OX3 7LD, UK
关键词: Domain swapping;    Metalloprotease;    M18 peptidase;    Dodecameric tetrahedron;    Aspartyl aminopeptidase;   
Others  :  1092182
DOI  :  10.1186/1472-6807-12-14
 received in 2012-03-22, accepted in 2012-05-29,  发布年份 2012
PDF
【 摘 要 】

Backround

Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated.

Results

The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids.

Conclusions

The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.

【 授权许可】

   
2012 Chaikuad et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128181002841.pdf 1368KB PDF download
Figure 5. 104KB Image download
Figure 4. 70KB Image download
Figure 3. 147KB Image download
Figure 2. 113KB Image download
Figure 1. 173KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Taylor A: Aminopeptidases: structure and function. FASEB J 1993, 7(2):290-298.
  • [2]Mucha A, Drag M, Dalton JP, Kafarski P: Metallo-aminopeptidase inhibitors. Biochimie 2010, 92(11):1509-1529.
  • [3]Li L, Wang J, Cooper MD: cDNA cloning and expression of human glutamyl aminopeptidase (aminopeptidase A). Genomics 1993, 17(3):657-664.
  • [4]Banegas I, Prieto I, Vives F, Alba F, de Gasparo M, Segarra AB, Hermoso F, Duran R, Ramirez M: Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst 2006, 7(3):129-134.
  • [5]Wright JW, Harding JW: Brain renin-angiotensin–a new look at an old system. Prog Neurobiol 2011, 95(1):49-67.
  • [6]Wilk S, Wilk E, Magnusson RP: Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem 1998, 273(26):15961-15970.
  • [7]Yokoyama R, Kawasaki H, Hirano H: Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells. FEBS J 2006, 273(1):192-198.
  • [8]Kusumoto KI, Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Takeuchi M, Kashiwagi Y: Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 2008, 105(5):1711-1719.
  • [9]Cai WW, Wang L, Chen Y: Aspartyl aminopeptidase, encoded by an evolutionarily conserved syntenic gene, is colocalized with its cluster in secretory granules of pancreatic islet cells. Biosci Biotechnol Biochem 74(10):2050-2055.
  • [10]Larrinaga G, Callado LF, Agirregoitia N, Varona A, Gil J: Subcellular distribution of membrane-bound aminopeptidases in the human and rat brain. Neurosci Lett 2005, 383(1–2):136-140.
  • [11]Nakamura Y, Inloes JB, Katagiri T, Kobayashi T: Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 31(14):3019-3028.
  • [12]Rawlings ND, Tolle DP, Barrett AJ, MEROPS: MEROPS: the peptidase database. Nucleic Acids Res 2004, 32(Database issue):D160-D164.
  • [13]Lowther WT, Matthews BW: Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 2002, 102(12):4581-4608.
  • [14]Metz G, Rohm KH: Yeast aminopeptidase I Chemical composition and catalytic properties. Biochim Biophys Acta 1976, 429(3):933-949.
  • [15]Franzetti B, Schoehn G, Hernandez JF, Jaquinod M, Ruigrok RW, Zaccai G: Tetrahedral aminopeptidase: a novel large protease complex from archaea. EMBO J 2002, 21(9):2132-2138.
  • [16]Rawlings ND, Barrett AJ: Evolutionary families of metallopeptidases. Methods Enzymol 1995, 248:183-228.
  • [17]Wilk S, Wilk E, Magnusson RP: Identification of histidine residues important in the catalysis and structure of aspartyl aminopeptidase. Arch Biochem Biophys 2002, 407(2):176-183.
  • [18]Schoehn G, Vellieux FM, Asuncion Dura M, Receveur-Brechot V, Fabry CM, Ruigrok RW, Ebel C, Roussel A, Franzetti B: An archaeal peptidase assembles into two different quaternary structures: A tetrahedron and a giant octahedron. J Biol Chem 2006, 281(47):36327-36337.
  • [19]Russo S, Baumann U: Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase. J Biol Chem 2004, 279(49):51275-51281.
  • [20]Kim D, San BH, Moh SH, Park H, Kim DY, Lee S, Kim KK: Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease. Biochem Biophys Res Commun 2010, 391(1):431-436.
  • [21]Jozic D, Bourenkow G, Bartunik H, Scholze H, Dive V, Henrich B, Huber R, Bode W, Maskos K: Crystal structure of the dinuclear zinc aminopeptidase PepV from Lactobacillus delbrueckii unravels its preference for dipeptides. Structure 2002, 10(8):1097-1106.
  • [22]Rowsell S, Pauptit RA, Tucker AD, Melton RG, Blow DM, Brick P: Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure 1997, 5(3):337-347.
  • [23]Borissenko L, Groll M: Crystal structure of TET protease reveals complementary protein degradation pathways in prokaryotes. J Mol Biol 2005, 346(5):1207-1219.
  • [24]Dura MA, Rosenbaum E, Larabi A, Gabel F, Vellieux FM, Franzetti B: The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea. Mol Microbiol 2009, 72(1):26-40.
  • [25]CCP4: The CCP4 suite: programs for protein crystallography. Acta Crystallogr D: Biol Crystallogr 1994, 50(Pt 5):760-763.
  • [26]McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ: Likelihood-enhanced fast translation functions. Acta Crystallogr D: Biol Crystallogr 2005, 61(Pt 4):458-464.
  • [27]Cowtan K, Main P: Miscellaneous algorithms for density modification. Acta crystallographica 1998, 54(Pt 4):487-493.
  • [28]Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS: ARP/wARP and molecular replacement. Acta crystallographica 2001, 57(Pt 10):1445-1450.
  • [29]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D: Biol Crystallogr 1997, 53(Pt 3):240-255.
  • [30]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D: Biol Crystallogr 2004, 60(Pt 12):2126-2132.
  • [31]Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A: SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 1996, 116(1):190-199.
  • [32]Frank J: Classification of macromolecular assemblies studied as 'single particles'. Q Rev Biophys 1990, 23(3):281-329.
  • [33]Goddard TD, Huang CC, Ferrin TE: Visualizing density maps with UCSF Chimera. J Struct Biol 2007, 157(1):281-287.
  • [34]Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J: BMC Bioinformatics. 2006, 7:316. BioMed Central Full Text
  • [35]Gilboa R, Greenblatt HM, Perach M, Spungin-Bialik A, Lessel U, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G: Acta crystallographica. 2000, 56(Pt 5):551-558.
  • [36]Gilboa R, Spungin-Bialik A, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G: Proteins. 2001, 44(4):490-504.
  • [37]Chevrier B, D'Orchymont H, Schalk C, Tarnus C, Moras D: Eur J Biochem. 1996, 237(2):393-398.
  文献评价指标  
  下载次数:151次 浏览次数:32次