期刊论文详细信息
BMC Infectious Diseases
Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use
Iruka N Okeke3  A Oladipo Aboderin2  John Wain4  Babatunde W Odetoyin2  Rebeccah S Lijek3  Jennifer L Crowe3  Adebayo Lamikanra1 
[1] Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria;Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State Nigeria;Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA;Health Protection Agency, Colindale, London, NW9 5EQ, UK
关键词: Escherichia coli;    fluoroquinolone-resistant;    antimalarial;    chloroquine;    Nigeria;    selective pressure;    fluoroquinolones;    ciprofloxacin;    drug resistance;    quinolone resistance;    antimicrobial use;    antimicrobial resistance;   
Others  :  1175537
DOI  :  10.1186/1471-2334-11-312
 received in 2011-06-25, accepted in 2011-11-07,  发布年份 2011
PDF
【 摘 要 】

Background

Antibiotic resistance has necessitated fluoroquinolone use but little is known about the selective forces and resistance trajectory in malaria-endemic settings, where selection from the antimalarial chloroquine for fluoroquinolone-resistant bacteria has been proposed.

Methods

Antimicrobial resistance was studied in fecal Escherichia coli isolates in a Nigerian community. Quinolone-resistance determining regions of gyrA and parC were sequenced in nalidixic acid resistant strains and horizontally-transmitted quinolone-resistance genes were sought by PCR. Antimicrobial prescription practices were compared with antimicrobial resistance rates over a period spanning three decades.

Results

Before 2005, quinolone resistance was limited to low-level nalixidic acid resistance in fewer than 4% of E. coli isolates. In 2005, the proportion of isolates demonstrating low-level quinolone resistance due to elevated efflux increased and high-level quinolone resistance and resistance to the fluoroquinolones appeared. Fluoroquinolone resistance was attributable to single nucleotide polymorphisms in quinolone target genes gyrA and/or parC. By 2009, 35 (34.5%) of isolates were quinolone non-susceptible with nine carrying gyrA and parC SNPs and six bearing identical qnrS1 alleles. The antimalarial chloroquine was heavily used throughout the entire period but E. coli with quinolone-specific resistance mechanisms were only detected in the final half decade, immediately following the introduction of the fluoroquinolone antibacterial ciprofloxacin.

Conclusions

Fluoroquinolones, and not chloroquine, appear to be the selective force for fluoroquinolone-resistant fecal E. coli in this setting. Rapid evolution to resistance following fluoroquinolone introduction points the need to implement resistant containment strategies when new antibacterials are introduced into resource-poor settings with high infectious disease burdens.

【 授权许可】

   
2011 Lamikanra et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150428033734158.pdf 270KB PDF download
Figure 2. 11KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Wellems TE, Plowe CV: Chloroquine-resistant malaria. J Infect Dis 2001, 184(6):770-776.
  • [2]Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV: Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 2003, 187(12):1870-1875.
  • [3]Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, Wellems TE: Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Nat AcadSci 2009, 106(45):18883-18889.
  • [4]Davidson RJ, Davis I, Willey BM, Rizg K, Bolotin S, Porter V, Polsky J, Daneman N, McGeer A, Yang P, et al.: Antimalarial therapy selection for quinolone resistance among Escherichia coli in the absence of quinolone exposure, in tropical South America. PLoS ONE 2008, 3(7):e2727.
  • [5]Henry M, Alibert S, Orlandi-Pradines E, Bogreau H, Fusai T, Rogier C, Barbe J, Pradines B: Chloroquine resistance reversal agents as promising antimalarial drugs. Curr Drug Targets 2006, 7(8):935-948.
  • [6]Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP: 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Pharm Chem 1962, 91:1063-1065.
  • [7]Thielman NM, Guerrant RL: Clinical practice. Acute infectious diarrhea. N Engl J Med 2004, 350(1):38-47.
  • [8]Jamison DT, World Bank, Disease Control Priorities Project: Disease control priorities in developing countries. 2nd edition. New York Washington, DC: Oxford University Press; World Bank; 2006.
  • [9]Monedero I, Caminero JA: MDR-/XDR-TB management: what it was, current standards and what is ahead. Expert Rev Respir Med 2009, 3(2):133-145.
  • [10]von Gottberg A, Klugman KP, Cohen C, Wolter N, de Gouveia L, du Plessis M, Mpembe R, Quan V, Whitelaw A, Hoffmann R, et al.: Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study. The Lancet 2008, 371(9618):1108-1113.
  • [11]van den Boogaard J, Semvua HH, Boeree MJ, Aarnoutse RE, Kibiki GS: Sale of fluoroquinolones in northern Tanzania: a potential threat for fluoroquinolone use in tuberculosis treatment. J Antimicrob Chemother 2010, 65(1):145-147.
  • [12]Hooper DC, Rubinstein E: Quinolone antimicrobial agents. 3rd edition. Washington, D.C.: ASM Press; 2003.
  • [13]Hawkey PM: Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 2003, 51(Suppl 1):29-35.
  • [14]Hopkins KL, Davies RH, Threlfall EJ: Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 2005, 25(5):358-373.
  • [15]Hooper DC: Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 2001, 32(Suppl 1):S9-S15.
  • [16]Tran JH, Jacoby GA: Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA 2002, 99(8):5638-5642.
  • [17]Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009, 22(4):664-689.
  • [18]Wang H, Dzink-Fox JL, Chen M, Levy SB: Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother 2001, 45(5):1515-1521.
  • [19]Yamane K, Wachino J-i, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y: New plasmid-mediated fluoroquinolone efflux Pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007, 51(9):3354-3360.
  • [20]Morgan-Linnell SK, Zechiedrich L: Contributions of the combined effects of topoisomerase mutations toward fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 2007, 51(11):4205-4208.
  • [21]Okeke I, Fayinka S, Lamikanra A: Antibiotic resistance trends in Escherichia coli from apparently healthy Nigerian students (1986-1998). Emerg Infect Dis 2000, 6(4):393-396.
  • [22]NCCLS: Performance standards for antimicrobial disk susceptibility tests, 8th Edition; Approved standard. Villanova PA: National Committee for Clinical Laboratory Standards; 2003:130.
  • [23]O'Brien TF, Stelling JM: WHONET: an information system for monitoring antimicrobial resistance. Emerg Infect Dis 1995, 1(2):66.
  • [24]CLSI: Methods for dilution antimicrobial susceptiblity tests for bacteria that grow aerobically. In Approved standard. 7th edition. Wayne, PA: Clinical and Laboratory Standards Institute; 2006.
  • [25]Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al.: The complete genome sequence of Escherichia coli K-12. Science 1997, 277(5331):1453-1474.
  • [26]Wu J-J, Ko W-C, Tsai S-H, Yan J-J: Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother 2007, 51(4):1223-1227.
  • [27]Liu J-H, Deng Y-T, Zeng Z-L, Gao J-H, Chen L, Arakawa Y, Chen Z-L: Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6')-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother 2008, 52(8):2992-2993.
  • [28]Nishino K, Senda Y, Yamaguchi A: CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J Antibiot (Tokyo) 2008, 61(3):120-127.
  • [29]Bohnert JA, Schuster S, Seeger MA, Fahnrich E, Pos KM, Kern WV: Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 2008, 190(24):8225-8229.
  • [30]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [31]Fields P, Blom K, Hughes H, Helsel L, Feng P, Swaminathan B: Molecular characterization of the gene encoding H antigen in Escherichia coli and development of a PCR-restriction fragment length polymorphism test for identification of E. coli O157:H7 and O157:NM. J Clin Microbiol 1997, 35:1066-1070.
  • [32]Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, et al.: Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006, 60(5):1136-1151.
  • [33]Monnet D: ABC Calc-Antibiotic consumption calculator. 3.0th edition. Copenhagen: Statens Serum Institute; 2005.
  • [34]Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K: Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother 2005, 49(2):801-803.
  • [35]Namboodiri SS, Opintan JA, Lijek RS, Newman MJ, Okeke IN: Quinolone resistance in Escherichia coli from Accra, Ghana. BMC Microbiol 2011, 11(1):44. BioMed Central Full Text
  • [36]Okeke I: The microbial rebellion: trends and containment of antimicrobial resistance in Africa. In HIV/AIDS, illness, and African well-being. Volume 27. Edited by Falola T, Heaton MM. Rochester, NY: University Of Rochester Press; 2007.
  • [37]Aina BA, Tayo F, Taylor O: Cost implication of irrational prescribing of chloroquine in Lagos State general hospitals. J Infect Dev Ctries 2008, 2(1):68-72.
  • [38]Aibinu I, Aednipekun E, Odugbemi T: Emergence of quinolone resistance amongst Escherichia coli strains isolated from clinical infections in some Lagos state hospitals, in Nigeria. Nig J HealthBiomed Sci 2004, 3(2):73-78.
  • [39]Okeke I, Lamikanra A, Czeczulin J, Dubovsky F, Kaper J, Nataro J: Heterogeneous virulence of enteroaggregative Escherchia coli strains isolated from children in Southwest Nigeria. J Infect Dis 2000, 181:252-260.
  • [40]Okeke IN, Fayinka ST, Lamikanra A: Antibiotic resistance in Escherichia coli from Nigerian students, 1986 1998. Emerg Infect Dis 2000, 6(4):393-396.
  • [41]Lamikanra A, Ako-nai AK, Ogunniyi DA: Transferable antibiotic resistance in Escherichia coli isolated from healthy Nigerian school children. Int J Antimicrob Ag 1996, 7:59-64.
  • [42]Djie-Maletz A, Reither K, Danour S, Anyidoho L, Saad E, Danikuu F, Ziniel P, Weitzel T, Wagner J, Bienzle U, et al.: High rate of resistance to locally used antibiotics among enteric bacteria from children in Northern Ghana. J Antimicrob Chemother 2008, 61(6):1315-1318.
  • [43]Le TM, Baker S, Le TP, Cao TT, Tran TT, Nguyen VM, Campbell JI, Lam MY, Nguyen TH, Nguyen VV, et al.: High prevalence of plasmid-mediated quinolone resistance determinants in commensal members of the Enterobacteriaceae in Ho Chi Minh City, Vietnam. J Med Microbiol 2009, 58(Pt 12):1585-1592.
  • [44]Escobar-Paramo P, Grenet K, Le Menac'h A, Rode L, Salgado E, Amorin C, Gouriou S, Picard B, Rahimy MC, Andremont A, et al.: Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 2004, 70(9):5698-5700.
  • [45]Briales A, Rodriguez-Martinez JM, Velasco C, Diaz de Alba P, Dominguez-Herrera J, Pachon J, Pascual A: In vitro effect of qnrA1, qnrB1, and qnrS1 genes on fluoroquinolone activity against isogenic Escherichia coli isolates with mutations in gyrA and parC. Antimicrob Agents Chemother 2011, 55(3):1266-1269.
  • [46]Aina BA, Tayo F, Taylor O, Eniojukan JF: Antimalarial prescribing patterns in state hospitals and selected parastatal hospitals in Lagos, Nigeria. Nig Q J Hosp Med 2009, 19(1):20-26.
  • [47]Babalola O, Lamikanra A: Pattern of antibiotic purchases in community pharmacies in South Western Nigeria. J Soc Admin Pharm 2002, 19:33-38.
  • [48]Boni MF, Smith DL, Laxminarayan R: Benefits of using multiple first-line therapies against malaria. Proc Natl Acad Sci USA 2008, 105(37):14216-14221.
  • [49]Bergstrom CT, Lo M, Lipsitch M: Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci USA 2004, 101(36):13285-13290.
  • [50]Nkemngu N, Munong : Susceptibility patterns of Salmonella enterica serovar Typhi to 10 antibiotics in Cameroon. 6th International Conference on Typhoid Fever and Other Salmonelloses: 2005; Guilin, china 2005, 99.
  • [51]Opintan JA, Newman MJ, Nsiah-Poodoh OA, Okeke IN: Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J Antimicrob Chemother 2008, 62(5):929-933.
  文献评价指标  
  下载次数:14次 浏览次数:11次