期刊论文详细信息
BMC Evolutionary Biology
Arthroaspis n. gen., a common element of the Sirius Passet Lagerstätte (Cambrian, North Greenland), sheds light on trilobite ancestry
David AT Harper2  John S Peel1  Graham E Budd1  Martin Stein3 
[1] Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, SE 752 36 Uppsala, Sweden;Department of Earth Sciences, Durham University, Science Labs, Durham DH1 3LE, UK;Natural History Museum of Denmark, Universitetsparken 15, DK-2100 Copenhagen, Denmark
关键词: Functional morphology;    Pygidium;    Appendages;    Trilobita;    Lamellipedia;    Arthropoda;    Sirius Passet Lagerstätte;   
Others  :  1087361
DOI  :  10.1186/1471-2148-13-99
 received in 2013-01-07, accepted in 2013-04-29,  发布年份 2013
PDF
【 摘 要 】

Background

Exceptionally preserved Palaeozoic faunas have yielded a plethora of trilobite-like arthropods, often referred to as lamellipedians. Among these, Artiopoda is supposed to contain taxa united by a distinctive appendage structure. This includes several well supported groups, Helmetiida, Nektaspida, and Trilobita, as well as a number of problematic taxa. Interrelationships remain unclear, and the position of the lamellipedian arthropods as a whole also remains the subject of debate.

Results

Arthroaspis bergstroemi n. gen. n. sp., a new arthropod from the early Cambrian Sirius Passet Lagerstätte of North Greenland shows a striking combination of both dorsal and ventral characters of Helmetiida, Nektaspida, and Trilobita. Cladistic analysis with a broad taxon sampling of predominantly early Palaeozoic arthropods yields a monophyletic Lamellipedia as sister taxon to the Crustacea or Tetraconata. Artiopoda is resolved as paraphyletic, giving rise to the Marrellomorpha. Within Lamellipedia, a clade of pygidium bearing taxa is resolved that can be shown to have a broadly helmetiid-like tergite morphology in its ground pattern. This morphology is plesiomorphically retained in Helmetiida and in Arthroaspis, which falls basally into a clade containing Trilobita. The trilobite appendages, though similar to those of other lamellipedians in gross morphology, have a unique outward rotation of the anterior trunk appendages, resulting in a ‘hard wired’ lateral splay, different to that observed in other Lamellipedia.

Conclusions

The combination of helmetiid, trilobite, and nektaspid characters in Arthroaspis gives important hints concerning character polarisation within the trilobite-like arthropods. The distinctive tergite morphology of trilobites, with its sophisticated articulating devices, is derived from flanged edge-to-edge articulating tergites forming a shield similar to the helmetiids, previously considered autapomorphic for that group. The stereotypical lateral splay of the appendages of lamellipedians is a homoplastic character shown to be achieved by several groups independently.

【 授权许可】

   
2013 Stein et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116025404143.pdf 7271KB PDF download
Figure 16. 45KB Image download
Figure 15. 91KB Image download
Figure 14. 172KB Image download
Figure 13. 52KB Image download
Figure 12. 124KB Image download
Figure 11. 225KB Image download
Figure 10. 190KB Image download
Figure 9. 186KB Image download
Figure 8. 234KB Image download
Figure 7. 130KB Image download
Figure 6. 184KB Image download
Figure 5. 165KB Image download
Figure 4. 119KB Image download
Figure 3. 154KB Image download
Figure 2. 163KB Image download
Figure 1. 130KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

【 参考文献 】
  • [1]Whittington HB: Early arthropods, their appendages and relationships. Systematic Association special Volume 1979, 12:253-268.
  • [2]Briggs DEG, Whittington HB: Relationships of arthropods from the Burgess Shale and other Cambrian sequences. In Short Papers for the Second International Symposium on the Cambrian System. Edited by Taylor ME. Unites States Depatment of the Interior, Geological Survey Open-File Report; 1981. 81-743:38–41
  • [3]Briggs DEG: Affinities and early evolution of the Crustacea: The evidence of the Cambrian fossils. In Crustacean Phylogeny. Edited by Schram FR. Rotterdam: Balkema; 1983:1-22.
  • [4]Bergström J: Morphology of fossil arthropods as a guide to phylogenetic relationships. In Arthropod phylogeny. Edited by Gupta AP. New York: Van Nostrand Reinhold; 1979:3-56.
  • [5]Briggs DEG, Fortey RA: The early radiation and relationships of the major arthropod groups. Science 1989, 246:241-243.
  • [6]Müller KJ, Walossek D: Skaracarida, a new order of Crustacea from the Upper Cambrian of Västergötland, Sweden. Fossils Strata 1985, 17:1-65.
  • [7]Müller KJ, Walossek D: Martinssonia elongata gen. et sp.n., a crustacean-like euarthropod from the Upper Cambrian 'Orsten' of Sweden. Zool Scr 1986, 15:73-92.
  • [8]Müller KJ, Walossek D: External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Fossils Strata 1988, 23:1-70.
  • [9]Walossek D, Müller KJ: Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus. Lethaia 1990, 23:409-427.
  • [10]Walossek D: The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils Strata 1993, 32:1-202.
  • [11]Chen J, Edgecombe GD, Ramsköld L, Zhou G: Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution. Science 1995, 268:1339-1343.
  • [12]Hou X, Bergström J: Arthropods of the Lower Cambrian Chengjiang Fauna, southwest China. Fossils Strata 1997, 45:1-116.
  • [13]Waloszek D, Chen J, Maas A, Wang X: Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev 2005, 34:189-205.
  • [14]Budd GE: A palaeontological solution of the arthropod head problem. Nature 2002, 417:271-275.
  • [15]Budd GE: Head structure in upper stem-group euarthropods. Palaeontology 2008, 51:561-573.
  • [16]Legg DA, Sutton MD, Edgecombe GD, Caron J-B: Cambrian bivalved arthropod reveals origin of arthrodization. P Roy Soc Lond B Bio 2012, 279:4699-4704.
  • [17]Briggs DEG, Lieberman BS, Hendricks JR, Halgedahl SL, Jarrard RD: Middle Cambrian arthropods from Utah. J Pal 2008, 82:238-254.
  • [18]Daley AC, Budd GE, Caron J-B, Edgecombe GD, Collins D: The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 2009, 323:1597-1600.
  • [19]Ortega-Hernández J, Legg DA, Braddy SJ: The phylogeny of aglaspidid arthropods and the internal relationships within Arthropoda. Cladistics 2013, 29:15-45.
  • [20]Størmer L: On the relationships and phylogeny of fossil and recent Arachnomorpha. Skrifter Utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Matematisk-Naturvetenskapelig Klasse 1944, 5:1-158.
  • [21]Chen J, Waloszek D, Maas A: A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 2004, 37:3-20.
  • [22]Cotton TJ, Braddy SJ: The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Trans R Soc Edinb Earth Sci 2004, 94:169-193.
  • [23]Haug JT, Waloszek D, Maas A, Liu Y, Haug C: Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 2012, 55:369-399.
  • [24]Haug JT, Briggs DEG, Haug C: Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evol Bio 2012, 12:1-20. BioMed Central Full Text
  • [25]Heider K: Entwicklungsgeschichte und Morphologie der Wirbellosen. Die Kultur der Gegenwart, Theil 3, Abt. 4. Leipzig: BG Teubner; 1913.
  • [26]Edgecombe GD, Ramsköld L: Relationships of Cambrian Arachnata and the systematic position of Trilobita. J Pal 1999, 73:263-287.
  • [27]Hendricks JR, Lieberman BS: New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. J Pal 2008, 82:585-594.
  • [28]Scholtz G, Edgecombe GD: Heads, Hox and the phylogenetic position of trilobites. In Crustacean Issues 16. Crustacea and Arthropod Relationships. Edited by Koenemann S, Jenner RA. Boca Raton, Fl: Taylor & Francis; 2005:139-165.
  • [29]Scholtz G, Edgecombe GD: The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 2006, 216:395-415.
  • [30]Hughes NC, Haug JT, Waloszek D: Basal euarthropod development: a fossil based perspective. In Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Edited by Minelli A, Fusco G. Cambridge, UK: Cambridge University Press; 2008:281-298.
  • [31]Stein M, Selden PA: A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. J Syst Pal 2012, 10:361-383.
  • [32]Paterson JR, García-Bellido DC, Edgecombe GD: New Artiopodan Arthropods from the Early Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia. J Pal 2012, 86:340-357.
  • [33]Conway Morris S, Peel JS, Higgins AK, Soper NJ, Davis NC: A Burgess Shale-like fauna from the Lower Cambrian of North Greenland. Nature 1987, 326:181-183.
  • [34]Conway Morris S: The crucible of creation. The Burgess Shale and the rise of animals. Oxford, UK: Oxford University Press; 1998.
  • [35]Ineson JS, Peel JR: Geological and depositional setting of the Sirius Passet Lagerstätte (Early Cambrian), North Greenland. Can J Earth Sci 2011, 48:1259-1281.
  • [36]Babcock LE, Peel JS: Palaeobiology, taphonomy, and stratigraphic significance of the trilobite Buenellus from the Sirius Passet Biota, Cambrian of North Greenland. MAAP 2007, 34:401-418.
  • [37]Peel JS, Ineson JR: The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bull Geosci 2011, 86:535-543.
  • [38]Peel JS, Ineson JR: The Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Palaeontographica Canadiana 2011, 31:109-118.
  • [39]Peel JS: Articulated hyoliths and other fossils from the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bull Geosci 2010, 85:385-394.
  • [40]Vinther J, Eibye-Jacobsen D, Harper DAT: An Early Cambrian stem polychaete with pygidial cirri. Biol Letters 2011, 7:929-932.
  • [41]Vinther J, Smith MP, Harper DAT: Vetulicolians from the Lower Cambrian Sirius Passet Lagerstätte, North Greenland, and the polarity of morphological characters in basal deuterostomes. Palaeontology 2011, 54:711-719.
  • [42]Higgins AK, Ineson JR, Peel JS, Surlyk F, Sønder-Holm M: Lower Palaeozoic Franklinian Basin of North Greenland. Grønlands Geologiske Undersøgelse Bulletin 1991, 160:71-139.
  • [43]Ineson JR, Peel JS: Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin 1997, 172:1-120.
  • [44]Butterfield NJ: Organic preservation of non−mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 1990, 16:272-286.
  • [45]Orr PJ, Briggs DEG, Kearns SL: Cambrian Burgess Shale Animals replicated in clay minerals. Science 1998, 281:1173-1175.
  • [46]Caron J-B, Jackson DA: Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. PALAIOS 2006, 21:451-465.
  • [47]Gaines RR, Hammarlund EU, Hou X, Qi C, Gabbott SE, Zhao Y, Peng J, Canfield DE: Mechanism for Burgess Shale-type preservation. PNASin press
  • [48]Budd GE: Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle. Lethaia 1998, 31:197-210.
  • [49]Budd GE: A nektaspid arthropod from the Early Cambrian Sirius Passet fauna, with a description of retrodeformation based on functional morphology. Palaeontology 1999, 42:99-122.
  • [50]Budd GE: A Cambrian gilled lobopod. Nature 1993, 364:709-711.
  • [51]Budd GE: Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland. In Arthropod Relationships, Systematics Association Special Volume Series. Edited by Fortey RA, Thomas RH. London: Chapman and Hall; 1997:125-138.
  • [52]Budd GE: Campanamuta mantonae gen. et sp. nov., an exceptionally preserved arthropod from the Sirius Passet Fauna (Buen Formation, lower Cambrian, North Greenland). J Syst Pal 2011, 9:217-260.
  • [53]Butterfield NJ: Secular distribution of Burgess-Shale-type preservation. Lethaia 1995, 28:1-13.
  • [54]Mángano MG, Bromley RG, Harper DAT, Nielsen AT, Smith MP, Vinther J: Nonbiomineralized carapaces in seafloor landscapes (Sirius Passet, Greenland): Opening a new window into early Phanerozoic benthic ecology. Geology 2012, 40:519-522.
  • [55]Whittington HB: Morphology of the exoskeleton. In Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1, Trilobita, Revised. Edited by Kaesler RL. Lawrence: Geological Society of America and University of Kansas Press; 1997:1-85.
  • [56]Stein M, Waloszek D, Maas A, Haug JT, Müller KJ: The stem crustacean Oelandocaris oelandica Müller re-visited. Acta Pal Pol 2008, 53:461-484.
  • [57]Goloboff PA, Farris JS, Nixon KC: TNT, a free program for phylogenetic analysis. Cladistics 2008, 24:774-786.
  • [58]Goloboff PA: Estimating character weights during tree search. Cladistics 1993, 9:83-91.
  • [59]Edgecombe GD, García-Bellido DC, Paterson JR: A New Leanchoiliid Megacheiran Arthropod from the Lower Cambrian Emu Bay Shale, South Australia. Acta Pal Pol 2011, 56:385-400.
  • [60]Haug JT, Maas A, Waloszek D: †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth Env Sci Trans R Soc Edinb 2010, 100:311-350.
  • [61]Briggs DEG, Bruton DL, Whittington HB: Appendages of the arthropod Aglaspis spinifer (Upper Cambrian, Wisconsin) and their significance. Palaeontology 1979, 22:167-180.
  • [62]Stürmer W, Bergström J: The arthropod Cheloniellon from the Devonian Hunsrück Slate. Pal Z 1978, 52:57-81.
  • [63]Kühl G, Bergström J, Rust J: Morphology, Palaeobiology, and Phylogenetic Position of Vachonisia rogeri (Arthropoda) from the Lower Devonian Hunsrück Slate (Germany). Palaeontographica Abteilung A 2008, 286:123-157.
  • [64]Kühl G, Rust J: Re-investigation of Mimetaster hexagonalis: a marrellomorph arthropod from the Lower Devonian Hunsrück Slate (Germany). Pal Z 2010, 84:397-411.
  • [65]Hou X, Aldridge RJ, Bergström J, Siveter DJ, Siveter DJ, Fen X: The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life. Oxford: Blackwell; 2004.
  • [66]Zhang X, Han J, Zhang Z, Liu H, Shu D: Redescription of the Chengjiang arthropod Squamacula clypeata Hou and Bergström, from the Lower Cambrian, South-West China. Palaeontology 2004, 47:605-617.
  • [67]Minter NJ, Mángano MG, Caron J-B: Skimming the surface with Burgess Shale arthropod locomotion. P Roy Soc Lond B Bio 2012, 279:1613-1620.
  • [68]Zhang X, Shu D: A new arthropod from the Chengjiang Lagerstätte, Early Cambrian, southern China. Alcheringa 2005, 29:185-194.
  • [69]Zhang X, Shu D, Erwin DH: Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. J Pal 2007, 81:1-52.
  • [70]Haug JT, Castellani C, Haug C, Waloszek D, Maas A: A Marrella-like arthropod from the Cambrian of Australia: A new link between “Orsten”-type assemblages and the Burgess Shale. Acta Pal Pol
  • [71]Moore RA, Briggs DEG, Bartels C: A new specimen of Weinbergina opitzi (Chelicerata: Xiphosura) from the Lower Devonian Hunsrück Slate, Germany. Pal Z 2005, 79:399-408.
  • [72]Bruton DL, Whittington HB: Emeraldella and Leanchoilia, two arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philos Trans R Soc Lond 1983, 300:553-582.
  • [73]Dunlop JA, Arango CP: Pycnogonid affinities: a review. J Zool Syst Evol Res 2005, 43:8-21.
  • [74]Dzik J, Lendzion K: The oldest arthropods of the East European Platform. Lethaia 1988, 21:29-38.
  • [75]Castellani C, Haug JT, Haug C, Maas A, Schoenemann B, Waloszek D: Exceptionally well-preserved isolated eyes from Cambrian ‘Orsten’ fossil assemblages of Sweden. Palaeontology 2012, 55:553-566.
  • [76]Ramsköld L, Chen J, Edgecombe GD, Zhou G: Cindarella and the arachnate clade Xandarellida (Arthropoda, Early Cambrian) from China. Trans R Soc Edinb Earth Sci 1997, 88:19-38.
  • [77]Chen J, Edgecombe GD, Ramsköld L: Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang Fauna, China. Rec Aust Mus 1997, 49:1-24.
  • [78]Whittington HB: The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philos Trans R Soc Lond 1977, 280:409-443.
  • [79]Briggs DEG, Collins D: The arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology 1999, 42:953-977.
  • [80]Liu Y, Hou X, Bergström J: Chengjiang arthropod Leanchoilia illecebrosa (Hou, 1987) reconsidered. GFF 2007, 129:263-272.
  • [81]Paterson JR, Edgecombe GD, García-Bellido DC, Jago JB, Gehling JG: Nektaspid arthropods from the lower Cambrian Emu Bay Shale lagerstätte, South Australia, with a reassessment of lamellipedian relationships. Palaeontology 2010, 53:377-402.
  • [82]Fortey RA, Theron JN: A new Ordovician arthropod, Soomaspis, and the agnostid problem. Palaeontology 1994, 37:841-861.
  • [83]Stürmer W, Bergström J: Weinbergina, a xiphosuran arthropod from the Devonian Hunsrück Slate. Pal Z 1981, 55:237-255.
  • [84]Bruton DL: The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philos Trans R Soc Lond 1981, 295:619-656.
  • [85]Minelli A, Fusco G, Hughes NC: Tagmata and segment specification in trilobites. Spec Pap Palaeontol 2003, 70:31-43.
  • [86]Zhang X, Fu D, Dai T: A new xandarellid arthropod from the Chengjiang Lagerstätte, Lower Cambrian of Southwest China. Geobios 2012, 45:335-338.
  • [87]Whittington HB: Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils Strata 1975, 4:97-136.
  • [88]Ramsköld L, Chen J, Edgecombe GD, Zhou G: Preservational folds simulating tergite junctions in tegopeltid and naraoiid arthropods. Lethaia 1996, 29:15-20.
  • [89]Budd GE, Telford MJ: The origin and evolution of arthropods. Nature 2009, 457:812-817.
  • [90]Bergström J: Organization, life and systematics of trilobites. Fossils Strata 1973, 2:1-69.
  • [91]Vannier J, Chen J: Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 2002, 35:107-120.
  • [92]Luo H, Hu S, Zhang S, Tao Y: New occurrence of the Early Cambrian Chengjiang Fauna in Haiku, Kunming, Yunnan Province, and study on Trilobitoidea. Acta Geol Sin 1997, 71:122-132.
  • [93]Lagebro L, Stein M, Peel JS: A new ?lamellipedian arthropod from the early Cambrian Sirius Passet Fauna of North Greenland. J Pal 2009, 83:820-825.
  • [94]Jell PA, Hughes NC: Himalayan Cambrian trilobites. Spec Pap Palaeontol 1997, 58:1-113.
  • [95]Stein M: A new arthropod from the Early Cambrian of North Greenland with a ‘great appendage’ like antennula. Zool J Linn Soc-Lond 2010, 158:477-500.
  • [96]Bergström J, Stürmer W, Winter G: Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. Pal Z 1980, 54:7-54.
  • [97]Stein M, Waloszek D, Maas A: Oelandocaris oelandica and the stem lineage of Crustacea. In Crustacean Isues 16. Crustacea and Arthropod Relationships. Edited by Koenemann S, Jenner RA. Boca Raton, FL: Taylor & Francis; 2005:55-71.
  • [98]Cotton TJ, Fortey RA: Comparative morphology and relationships of the Agnostida. In Crustacean Isues 16. Crustacea and Arthropod Relationships Edited by Koenemann S, Jenner RA. 2005, 95-136.
  • [99]Esteve J, Hughes NC, Zamora S: Thoracic structure and enrolment style in Middle Cambrian Eccaparadoxides pradoanus presages caudalization of the derived trilobite trunk. Palaeontologyin press
  • [100]Whittington HB: Articulation and exuviation in Cambrian trilobites. Philos Trans R Soc Lond 1990, 329:27-46.
  • [101]Hughes NC: Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integr Comp Biol 2003, 43:185-206.
  • [102]Lieberman BS, Karim TS: Tracing the trilobite tree from the root to the tips: a model marriage of fossils and phylogeny. Arthropod Struct Dev 2010, 39:111-123.
  • [103]Lieberman BS: Phylogenetic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). J Pal 2001, 75:96-115.
  • [104]Lieberman BS: Phylogenetic analysis of some basal Early Cambrian trilobites, the biogeographic origins of Eutrilobita, and the timing of the Cambrian radiation. J Pal 2002, 76:692-708.
  • [105]Jell PA: Phylogeny of early Cambrian trilobites. Spec pap Palaeontol 2003, 70:45-57.
  • [106]Hughes NC: The evolution of trilobite body patterning. Ann Rev Earth Plan Sci 2007, 2007(35):401-434.
  • [107]Ortega-Hernández J, Brena C: Ancestral Patterning of Tergite Formation in a Centipede Suggests Derived Mode of Trunk Segmentation in Trilobites. PLoS One 2012, 7:e52623.
  • [108]Müller KJ, Walossek D: Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils & Strata 1987, 19:1-124.
  • [109]Bergström J, Hou X: Chengjiang arthropods and their bearing on early arthropod evolution. In Arthropod Fossils and Phylogeny. Edited by Edgecombe GD. New York: Columbia University Press; 1998:151-184.
  • [110]Narbonne GM, Myrow PM, Landing E, Anderson MM: A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Can J Earth Sci 1987, 24:1277-1293.
  • [111]Lane AA, Braddy SJ, Briggs DEG, Elliott DK: A new trace fossil from the Middle Cambrian of the Grand Canyon, Arizona, USA. Palaeontology 2003, 46:987-997.
  • [112]Bergström J: The oldest arthropods and the origin of the Crustacea. Acta Zool 1992, 73:287-291.
  • [113]Ramsköld L, Edgecombe GD: Trilobite appendage structure—Eoredlichia reconsidered. Alcheringa 1996, 20:269-276.
  • [114]Stein M: A new look at old data: an example from the arthropods. PALAIOS 2011, 26:391-393.
  文献评价指标  
  下载次数:238次 浏览次数:32次