期刊论文详细信息
BMC Neuroscience
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period
CM Gómez2  AM López-Jiménez1  C Chinchilla2  MI Zapata2  CI Barriga-Paulino2  EI Rodríguez Martinez2 
[1] Behavioral Methodology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain;Human Psychobiology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain
关键词: Component analysis;    Principal component analysis;    Power spectrum;    Brain rhythms;    Adolescence;    EEG development;    Spontaneous EEG;   
Others  :  1141014
DOI  :  10.1186/1471-2202-13-104
 received in 2012-02-14, accepted in 2012-08-09,  发布年份 2012
PDF
【 摘 要 】

Background

The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old).

Results

The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults.

Conclusions

The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

【 授权许可】

   
2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325182856610.pdf 2314KB PDF download
Figure 12. 164KB Image download
Figure 11. 129KB Image download
Figure 10. 96KB Image download
Figure 9. 127KB Image download
Figure 8. 59KB Image download
Figure 7. 133KB Image download
Figure 6. 143KB Image download
Figure 5. 85KB Image download
Figure 1. 88KB Image download
Figure 3. 165KB Image download
Figure 2. 91KB Image download
Figure 1. 125KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 1.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A: Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Res Bull 2000, 54(3):255-266.
  • [2]Matousek M, Petersén I: Frequency analysis of the EEG in normal children and adolescents. In Automation of clinical electroencephalography. Edited by Kellaway P, Petersén I. New York: Raven; 1973:75-102.
  • [3]Somsen RJM, Klooster BJ, Van der Molen MW, Van Leeuwen HMP, Licht R: Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biol Psychol 1997, 44:187-209.
  • [4]Gasser T, Verleger R, Bächer P, Sroka L: Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalogr Clin Neurophysiol 1988, 69(2):91-9.
  • [5]John ER, Ahn H, Pricep L, Trepetin M, Brown D, Kaye H: Developmental equations for the electroencephalogram. Science 1980, 210:1255-1258.
  • [6]Alvarez A, Valdes P, Pascual R: EEG developmental equations confirmed for Cuban schoolchildren. Electroencephalogr Clin Neurophysiol 1987, 67(4):330-332.
  • [7]Koenig T, Prichep L, Lehmann D, Sosa PV, Breaker E, Kleinlogel H, John ER: Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages. Neuroimage 2002, 16(1):41-48.
  • [8]Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F: Age increases brain complexity. Electroencephalogr Clin Neurophysiol 1996, 99(1):63-68.
  • [9]Puligheddu M, Munck JC, Stam CJ, Verbunt J, Jongh A, Van Dijk B, Marrosu F: Age Distribution of MEG Spontaneous Theta Activity in Healthy Subjects. Brain Topogr 2005, 17(3):165-175.
  • [10]Barriga-Paulino CI, Flores AB, Gómez CM: Developmental changes in the EEG rhythms of children and young adults: Analyzed by means of correlational, brain topography and principal components analysis. Journal of Psychophysiology 2011, 25(3):143-158.
  • [11]Thatcher RW: Maturation of the human frontal lobes: Physiological evidence for staging. Dev Neuropsychol 1991, 7:397-419.
  • [12]Marosi E, Harmony T, Sánchez L, Becker J, Bernal J, Reyes A, de León AE D, Rodríguez M, Fernández T: Maturation of the coherence of EEG activity in normal and learning-disabled children. Electroencephalogr Clin Neurophysiol 1992, 83(6):350-357.
  • [13]Thatcher RW, North DM, Biver CJ: Development of cortical connections as measured by EEG coherence and phase delays. Hum Brain Mapp 2008, 29(12):1400-1415.
  • [14]Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM: Brain Maturation in Adolescence: Concurrent Changes in Neuroanatomy and Neurophysiology. Hum Brain Mapp 2007, 28:228-237.
  • [15]Tenke CE, Kayser J: Reference-free quantification of EEG spectra: combining current source density (CSD) and frequency principal components analysis (fPCA). Clin Neurophysiol 2005, 116:2826-2846.
  • [16]Gómez CM, Marco-Pallarés J, Grau C: Location of brain rhythms and their modulation by preparatory attention estimated by current density. Brain Res 2006, 1107:151-160.
  • [17]Haan M: Infant EEG and event-related potentials. NuevaYork: Psychology Press; 2007.
  • [18]Niedermeyer E: Lopes da Silva F: Electroencephalography: basic principles, clinical applications, and related fields. 4th edition. Baltimore: Williams and Wilkins; 1999.
  • [19]Carretié LA: Psicofisiología. Madrid: Pirámide; 2001.
  • [20]Segalowitz SJ, Santesso DL, Jetha MK: Electrophysiological changes during adolescence: a review. Brain Cogn 2010, 72(1):86-100.
  • [21]Clarke AR, Robert J, Barry RJ, McCarthy R, Selikowitz M: Age and sex effects in the EEG: development of the normal child. Clin Neurophysiol 2001, 112:806-814.
  • [22]Becerra J, Fernández T, Harmony T, Caballero MI, García F, Fernández-Bouzas A, Santiago-Rodríguez E, Prado-Alcalá RA: Follow-up study of leaning-disabled children treated with neurofeedback or placebo. Clin EEG Neurosci 2006, 37(3):198-203.
  • [23]Harmony T, Marosi E, de Leon AE D, Becker J, Fernandez T: Effect of sex, psychosocial disadvantages and biological risk factors on EEG maturation. Electroencephalogr. Clin Neurophysiol 1990, 75:482-491.
  • [24]Otero GA, Pliego-Riveroa FB, Fernández T, Ricardo J: EEG development in children with sociocultural disadvantages: a follow-up study. Clin Neurophysiol 2003, 114:1918-1925.
  • [25]Matthis P, Scheffner D, Benninger C, Lipinski C, Stolzis L: Changes in the background activity of the electroencephalogram according to age. Electroencephalogr Clin Neurophysiol 1980, 49:626-635.
  • [26]Benninger C, Matthis P, Scheffner D: EEG development of healthy boys and girls. Results of a longitudinal study. Electroencephalogr Clin Neurophysiol 1984, 57:1-12.
  • [27]Epstein HT: EEG developmental stages. Dev Psychobiol 1980, 13:629-63.
  • [28]Hudspeth WJ, Pribram KH: Psychophysiological indices of cerebral maturation. Int J Psychophysiol 1992, 12:19-29.
  • [29]Thatcher RW: Cyclic cortical reorganization during early childhood. Brain Cogn 1992, 20(1):24-50.
  • [30]Piaget J: Genesis and structure in the psychology of intelligence. In Six psychological studies. Edited by Elkin D. New York: Random House; 1967.
  • [31]Marcuse LV, Schneider M, Mortati KA, Donnelly KM, Arnedo V, Grant AC: Quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clin Neurophysiol 2008, 119:1778-81.
  • [32]Cragg L, Kovacevic N, McIntosh AR, Poulsen C, Martinu K, Leonard G, Paus T: Maturation of EEG power spectra in early adolescence: a longitudinal study. Dev Sci 2001, 14(5):935-943.
  • [33]Yordanova J, Kolev V: Developmental changes in the theta response system: a single-sweep analysis. Journal of Psychophysiology 2007. in press
  • [34]Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP: Neurodevelopmental Trajectories of the Human Cerebral Cortex. J Neurosci 2008, 28(14):3586-3594.
  • [35]Gasser T, Jennen-Steinmetz C, Sroka L, Verleger R, Mçcks J: Development of the EEG of school-age children and adolescents. II. Topography. Electroencephalogr Clin Neurophysiol 1988, 69:100-109.
  • [36]Otero G: Ontogenia y maduración del electroencefalograma. In Texto de Neurociencias Cognitivas. Edited by Romero V, Díaz E. México: Manual Moderno; 2001:371-392.
  • [37]Giedd JN: Structural Magnetic Resonance Imaging of the Adolescent Brain. Ann N Y Acad Sci 2004, 1021:77-85.
  • [38]Keshavan MS, Diwadkar VA, DeBellis M, Dick E, Kotwal R, Rosenberg DR, Sweeney JA, Minshew N, Pettegrew JW: Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci 2002, 70:1909-1922.
  • [39]Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J: Intellectual ability and cortical development in children and adolescents. Nature 2006, 440:676-679.
  • [40]Sowell ER, Trauner DA, Gamst A, Jernigan TL: Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 2002, 44:4-16.
  • [41]Tamnes CK, Fjell AM, Ostby Y, Westlye LT, Due-Tønnessen P, Bjørnerud A, Walhovd KB: The brain dynamics of intellectual development: Waxing and waning white and gray matter. Neuropsychologia 2011, 49(13):3605-11.
  • [42]Sowell ER, Thompson PM, Tessner KD, Toga AW: Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships during Postadolescent Brain Maturation. J Neurosci 2001, 21(22):8819-8829.
  • [43]Feinberg I, Campbell IG: Sleep EEG during adolescence: An index of fundamental brain reorganization. Brain Cogn 2010, (72):56-65.
  • [44]Feinberg I, Thode HC, Chugani HT, March JD: Gamma distribution model describes maturational curves for delta wave amplitude, cortical metabolic rate and synaptic density. J Theor Biol 1990, 142(2):149-161.
  • [45]John ER: Neurometrics. Functional Neuroscience, volume II. New Jersey: Lawrence Erlbaum Associates; 1977.
  • [46]Imgren J: Un análisis factorial del EEG humano. Revista de psicología general y aplicada: Revista de la Federación Española de Asociaciones de Psicología 1973, 28(122):255-272.
  • [47]Defayolle M, Dinand JP: Application de l’analyse factorielle a l’etude de la structure de l’EEG. Electroencephalogr Clin Neurophysiol 2001, 36:319-322.
  • [48]Duffy FH, Jones K, Bartels P, McAnulty G, Albert M: Unresticted principal components analysis of brain electrical activity, issues of data dimensionality, artifact and utility. BrainTopography 1992, 1:291-307.
  • [49]Lazarev V: On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Communication. I: Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. Int J Psychophysiol 1998, 28(1):77-98.
  • [50]Flores A, Gómez CM, Digiacomo MR, Vázquez-Marrufo M: Sequential P3 effects in a Posner's spatial cueing paradigm: trial-by-trial learning of the predictive value of the cue. Acta Neurobiol Exp 2009, 69(2):155-167.
  • [51]Flores AB, Gómez CM, Meneres S: Evaluation of spatial validity-invalidity by the P300 component in children and young adults. Brain Res Bull 2010, 81(6):525-33.
  • [52]Lagerlund TD, Sharbrough FW, Busacker NE: Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J Clin Neurophysiol 1997, 14:73-82.
  • [53]Zaragoza JR, Gómez-Palacios M: Física e instrumentación médicas. Sevilla: Publicaciones de la Universidad de Sevilla; 1977.
  • [54]Gorsuch RL: Factor Analysis. New Jersey: Lawrence Erlbaum Associates; 1983.
  • [55]Delorme A, Makeig S: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134(1):9-21.
  • [56]Lüchinger R, Michels L, Martin E, Brandeis D: EEG–BOLD correlations during (post-)adolescent brain maturation. Neuroimage 2011, 56:1493-1505.
  • [57]Chugani HT: Biological basis of emotions: Brain systems and brain development. Pediatrics 1998, 102:1225-1229.
  • [58]Hagemann D, Hewigb J, Walter C, Naumann E: Skull thickness and magnitude of EEG alpha activity. Clin Neurophysiol 2008, 119:1271-1280.
  • [59]Campbell IG, Feinberg I: Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. PNAS 2009, 106(13):5177-5180.
  • [60]Pfurtscheller G: Ultralangsame Schwankungen innerhalb der rhythmischen Aktivitaet im Alpha-Band und deren moegliche Ursachen. Pflugers Arch 1976, 367:55-66.
  • [61]Novak P, Lepicovska V, Dostalek C: Periodic amplitude modulation of EEG. Neurosci Lett 1992, 136:213-215.
  • [62]Otero G: Ontogenia y maduración del electroencefalograma. In Texto de Neurociencias Cognitivas. Edited by Romero V, Díaz E. México: Manual Moderno; 2001:371-392.
  • [63]Oken BS, Chiappa KH: Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 1988, 69:191-198.
  • [64]Wackermann J, Matousek M: From the ‘EEG age’ to a rational scale of brain electric maturation. Electroencephalogr Clin Neurophysiol 1998, 107:415-421.
  • [65]Toth M, Kiss A, Kosztolanyi P, Kondakor I: Diurnal alterations of brain electrical activity in healthy adults: a LORETA study. Brain Topogr 2007, 20(2):63-76.
  文献评价指标  
  下载次数:57次 浏览次数:17次