期刊论文详细信息
BMC Genetics
Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs
Shirlei Maria Recco-Pimentel1  Luciana Bolsoni Lourenço1  Stenio Eder Vittorazzi1 
[1] Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas, São Paulo, Brazil
关键词: Amphibia;    Physalaemus;    Chromosomes;    Satellite DNA;   
Others  :  1085426
DOI  :  10.1186/s12863-014-0111-x
 received in 2014-07-14, accepted in 2014-10-06,  发布年份 2014
PDF
【 摘 要 】

Background

Satellite DNA sequences are the most abundant components of heterochromatin and are repeated in tandem hundreds to thousands of times in the genome. However, the number of repeats of a specific satellite family can vary even between the genomes of related species or populations. The PcP190 satellite DNA family was identified in the genome of the leptodactylid frog Physalaemus cuvieri, which showed to be derived most likely from the 5S rDNA in an ancestral species. In this study, we investigate the presence of the PcP190 satellite DNA in several P. cuvieri populations and in four closely related species at the chromosomal and molecular level. Furthermore, we investigate the occurrence of this satellite DNA in the genomes of P. marmoratus as well as in representative species of the leptodactylid genus Leptodactylus (L. latrans) and the hylodid family (Crossodactylus gaudichaudii), all with the aim of investigating if the PcP190 satellite DNA presents or not a restricted distribution.

Results

The PcP190 satellite DNA was detected in all the analyzed species. Some of them exhibited particular sequence differences, allowing the identification of species-specific groups of sequences, but in other species, the sequences were more conserved. However, in a general analysis, conserved and variable domains have been recognized within the PcP190 monomer. The chromosomal analysis performed on P. cuvieri populations and closely related species revealed high variability of the satellite DNA amount and its chromosomal location, which has always been coincident with regions of centromeric/pericentromeric heterochromatin.

Conclusion

The PcP190 satellite DNA was found in representatives of two families, Leptodactylidae and Hylodidae, indicating that these sequences are widely distributed and conserved in these frogs. There is a pattern of non-random variation within the repeating units, indicating interplay between stochastic events and selective pressure along the PcP190 sequences. Karyotypic differences involving the PcP190 satellite DNA prove to be highly dynamic on the chromosomes of the Physalaemus and its differential accumulation has contributed to the differentiation process of the Z and W sex chromosomes in P. ephippifer.

【 授权许可】

   
2014 Vittorazzi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113173216480.pdf 1588KB PDF download
Figure 5. 87KB Image download
Figure 4. 76KB Image download
Figure 3. 69KB Image download
Figure 2. 82KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Charlesworth B, Sniegowski P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 1994, 371:215-220.
  • [2]López-Flores I, Ramos-Garrido MA: The repetitive DNA content of eukaryotic genomes. In Repetitive DNA. Edited by López-Flores I. Karger, Granada; 2012:1-28.
  • [3]Plohl M, Meštrović N, Mravinac B: Satellite DNA evolution. In Repetitive DNA. Edited by López-Flores I. Karger, Granada; 2012:126-152.
  • [4]Kopecna O, Kubickova S, Cernohorska H, Cabelova K, Vahala J, Rubes J: Isolation and comparison of tribe-specific centromeric repeats within Bovidae. J Appl Genet 2012, 53:193-202.
  • [5]Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD: Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit Fly, Bactrocera oleae. PLoS One 2013, 8:1-11.
  • [6]Singer MF: Highly repeated sequences in mammalian genomes. Int Rev Cytol 1982, 76:67-112.
  • [7]Picariello O, Feliciello I, Bellinello R, Chinali G: S1 satellite as a taxonomic marker in brown frogs: molecular evidence that Rana graeca graeca and Rana graeca italica are different species. Genome 2002, 45:63-70.
  • [8]Martinsen L, Venanzetti F, Johnsen A, Sbordoni V, Bachmann L: Molecular evolution of the pDo500 satellite DNA family in Dolichopoda cave crickets (Rhaphidophoridae). BMC Evol Biol 2009, 9:301-314. BioMed Central Full Text
  • [9]Cazaux B, Catalan J, Justy F, Escudé C, Desmarais E, Britton-Davidian J: Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach. Chromosoma 2013, 122:209-220.
  • [10]Slamovits HC, Rossi MS: Satellite DNA: agent of chromosomal evolution in mammals. Mastozoología Neotropical 2002, 9:297-308.
  • [11]Kogan GL, Gvozdev VA: Molecular evolution of tandem heterochromatic repeats involving a switch of their function in the genome of Drosophila melanogaster. Russ J Genet 2002, 38:586-593.
  • [12]Ugarković D, Plohl M: Variation in satellite DNA profiles – causes and effects. EMBO J 2002, 21:5955-5959.
  • [13]Plohl M, Luchetti A, Meštrović N, Mantovani B: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 2008, 409:72-82.
  • [14]Ferree PM, Prasad M: How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. Genet Res Int 2012, 2012:1-11.
  • [15]Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PMG: A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformers: Erythrinidae) is derived from 5S rDNA. Genetica 2006, 127:133-141.
  • [16]Plohl M: Those mysterious sequences of satellite DNAs. Period Biol 2010, 112:403-410.
  • [17]Dover GA: Molecular drive: a cohesive mode of species evolution. Nature 1982, 299:111-117.
  • [18]Ohta T, Dover GA: The cohesive population genetics of molecular drive. Genetics 1984, 108:501-521.
  • [19]Salser W, Bowen S, Browne D, El Adli F, Fedoroff N, Fry K, Heindell H, Paddock G, Poon R, Wallace B, Whitcome P: Investigation of the organization of mammalian chromosomes at the sequence level. Fed Proc 1976, 35:23-35.
  • [20]Fry K, Salser W: Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 1977, 12:1069-1084.
  • [21]Meštrović N, Plohl M, Mravinac B, Ugarković ĐÐ: Evolution of satellite DNAs from the genus Palorus - experimental evidence for the ‘library’ hypothesis. Mol Biol Evol 1998, 15:1062-1068.
  • [22]Slamovits CH, Cook JA, Lessa EP, Rossi MS: Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American Tuco-tucos (Genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. Mol Biol Evol 2001, 18:1708-1719.
  • [23]Bruvo-Madaric B, Plohl M: Wide distribution of related satellite DNA families within the genus Pimelia (Tenebrionidae). Genetica 2007, 130:35-42.
  • [24]Caraballo DA, Belluscio PM, Rossi MA: The library model for satellite DNA evolution: a case study with the rodents of the genus Ctenomys (Octodontidae) from the Ibera marsh, Argentina. Genetica 2010, 138:1201-1210.
  • [25]Vittorazzi SE, Lourenço LB, Del-Grande ML, Recco-Pimentel SM: Satellite DNA derived from 5S rDNA in Physalaemus cuvieri (Anura, Leiuperidae). Cytogenet Genome Res 2011, 134:101-107.
  • [26][http://research.amnh.org/herpetology/amphibia/index.html] webcite Frost DR: Amphibian species of the world: an online reference. 2014, Version 6.0 (10 March 2014). []. American Museum of Natural History, New York, USA.
  • [27]Nascimento BN, Caramashi U, Cruz CAG: Taxonomic review of the species groups of the genus Physalaemus Fitzinger, 1826 with revalidation of the genera Engystomops Jiménez-De-La-Espada, 1872 and Eupemphix Steindachner, 1863 (Amphibia, Anura, Leptodactylidae). Arquivos do Museu Nacional do Rio de Janeiro 2005, 63:297-320.
  • [28]Lynch JD: Systematic status of the american leptodactylid frog genera Engystomops, Eupemphix, and Physalaemus. Copeia 1970, 1970:488-496.
  • [29]Vittorazzi SE, Quinderé YRSD, Recco-Pimentel SM, Tomatis C, Baldo D, Lima JRF, Ferro JM, Lima JD, Lourenço LB: Comparative cytogenetics of Physalaemus albifrons and Physalaemus cuvieri species groups (Anura, Leptodactylidae). Comp Cytogenet 2014, 8:103-123.
  • [30]Beçak ML, Denaro L, Beçak W: Polyploidy and mechanisms of karyotypic diversification in Amphibia. Cytogenetics 1970, 9:225-238.
  • [31]Denaro L: Karyotypes of Leptodactylidae anurans. J Herpetol 1972, 6:71-74.
  • [32]De Lucca EJ, Jim J, Foresti F: Chromosomal studies in twelve species of Leptodactylidae and one Brachycephalidae. Caryology 1974, 27:183-191.
  • [33]Silva APZ, Haddad CFB, Kasahara S: Nucleolus organizer regions in Physalaemus cuvieri (Anura, Leptodactylidae), with evidence of a unique case of Ag-NOR variability. Hereditas 1999, 131:135-141.
  • [34]Quinderé YRSD, Lourenço LB, Andrade GV, Tomatis C, Baldo D, Recco-Pimentel SM: Additional cytogenetics analyses of the widespread anuran Physalaemus cuvieri (Anura, Leiuperidae) with emphasis on NOR variability. Biol Res 2009, 42:79-92.
  • [35]Nascimento J, Quinderé YRSD, Recco-Pimentel SM, Lima JRF, Lourenço LB: Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica 2010, 138:1127-1132.
  • [36]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York; 1989.
  • [37]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [38]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
  • [39]Kimura M: A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  • [40]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [41]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9:671-675.
  • [42]King M, Rofe R: Karyotypic variation in the Australian gecko Phyllodactylus marmoratus (Gray) (Gekkonidae: Reptilia). Chromosoma 1976, 54:75-87.
  • [43]Schmid M: Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 1978, 66:361-388.
  • [44]Viegas-Pequignot E: In Situ Hybridization to Chromosomes With Biotinylated Probes. In In Situ Hybridization: a Practical Approach. Edited by Willernson D. Oxford University Press-IRL Press, Oxford; 1992:137-158.
  • [45]Howell WM, Black DA: Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 1980, 36:1014-1015.
  • [46]Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 2011, 61:543-583.
  • [47]Fouquet A, Blotto BL, Maronna MM, Verdade VK, Juncá FA, De Sá R, Rodrigues MT: Unexpected phylogenetic positions of the genera Rupirana and Crossodactylodes reveal insights into the biogeography and reproductive evolution of leptodactylid frogs. Mol Phylogenet Evol 2013, 67:445-457.
  • [48]Mehrotra S, Goel S, Raina SN, Rajpal VR: Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms. Appl Biochem Biotechnol 2014, 173:1-12.
  • [49]Teruel M, Ruíz-Ruano FJ, Marchal JA, Sánchez A, Cabrero J, Camacho JPM, Perfectti F: Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans. Heredity 2014, 112:531-542.
  • [50]Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P: A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 1991, 19:1179-1182.
  • [51]Bachmann L, Sperlich D: Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. Mol Biol Evol 1993, 10:647-659.
  • [52]Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F: Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 1999, 11:31-42.
  • [53]Henikoff S, Ahmad K, Malik HS: The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001, 293:1098-1102.
  • [54]Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J: The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci 2013, 110:4875-4883.
  • [55]Meštrović N, Randig O, Abad P, Plohl M, Castagnone-Sereno F: Conserved and variable domains in satellite DNAs of mitotic parthenogenetic root-knot nematode species. Gene 2005, 362:44-50.
  • [56]Meštrović N, Castagnone-Sereno P, Plohl M: High conservation of the differentially amplified MPA2 satellite DNA family in parthenogenetic root-knot nematodes. Gene 2006, 376:260-267.
  • [57]Hall SE, Kettler G, Preuss D: Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 2003, 13:195-205.
  • [58]Ellingsen A, Slamovits CH, Rossi MS: Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia). Gene 2007, 392:283-290.
  • [59]Ferree PM, Barbash DA: Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 2009, 7:1-13.
  • [60]Conte M, Zucchi MI, Andrade GV, Souza AP, Recco-Pimentel SM: Study of closely related species within the Physalaemus cuvieri group (Anura): contribution of microsatellite markers. Genet Mol Res 2011, 10:1434-1444.
  • [61]Singh L, Purdom IF, Jones KW: Satellite DNA and evolution of sex chromosomes. Chromosoma 1976, 59:43-62.
  • [62]Charlesworth D, Charlesworth B, Marais G: Steps in the evolution of heteromorphic sex chromosomes. Heredity 2005, 95:118-128.
  • [63]Schemberger MO, Bellafronte E, Nogaroto V, Almeida MC, Schuhli GS, Artoni RF, Moreira-Filho O, Vicari MR: Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica 2011, 139:1499-1508.
  • [64]Steflova P, Tokan V, Vogel I, Lexa M, Macas J, Novak P, Hobza H, Vyskot B, Kejnovsky E: Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol Evol 2013, 5:769-782.
  文献评价指标  
  下载次数:82次 浏览次数:50次