期刊论文详细信息
BMC Microbiology
Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection
Christina Dixelius1  Stephen C Whisson2  Anna O Avrova2  Pádraic Corcoran3  Johan Fogelqvist1  Sultana N Jahan1  Ramesh R Vetukuri1  Anna KM Åsman1 
[1] Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden;Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, Invergowrie, UK;Current affiliation: Department of Evolutionary Biology, Uppsala University, Uppsala, SE-75236, Sweden
关键词: tRNA;    tRF;    Small RNA;    RNA silencing;    Potato;    Phytophthora infestans;    Dicer;    Argonaute;   
Others  :  1131222
DOI  :  10.1186/s12866-014-0308-1
 received in 2014-09-08, accepted in 2014-11-24,  发布年份 2014
PDF
【 摘 要 】

Background

The oomycete Phytophthora infestans possesses active RNA silencing pathways, which presumably enable this plant pathogen to control the large numbers of transposable elements present in its 240 Mb genome. Small RNAs (sRNAs), central molecules in RNA silencing, are known to also play key roles in this organism, notably in regulation of critical effector genes needed for infection of its potato host.

Results

To identify additional classes of sRNAs in oomycetes, we mapped deep sequencing reads to transfer RNAs (tRNAs) thereby revealing the presence of 19–40 nt tRNA-derived RNA fragments (tRFs). Northern blot analysis identified abundant tRFs corresponding to half tRNA molecules. Some tRFs accumulated differentially during infection, as seen by examining sRNAs sequenced from P. infestans-potato interaction libraries. The putative connection between tRF biogenesis and the canonical RNA silencing pathways was investigated by employing hairpin RNA-mediated RNAi to silence the genes encoding P. infestans Argonaute (PiAgo) and Dicer (PiDcl) endoribonucleases. By sRNA sequencing we show that tRF accumulation is PiDcl1-independent, while Northern hybridizations detected reduced levels of specific tRNA-derived species in the PiAgo1 knockdown line.

Conclusions

Our findings extend the sRNA diversity in oomycetes to include fragments derived from non-protein-coding RNA transcripts and identify tRFs with elevated levels during infection of potato by P. infestans.

【 授权许可】

   
2014 Åsman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150301023210506.pdf 2894KB PDF download
Figure 5. 92KB Image download
Figure 4. 36KB Image download
Figure 3. 83KB Image download
Figure 2. 102KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Beakes GW, Glockling SL, Sekimoto S: The evolutionary phylogeny of the oomycete “fungi”. Protoplasma 2012, 249(1):3-19.
  • [2]Dick MW: The Peronosporomycetes. In The Mycota VII. Systematics and Evolution Part A. Edited by McLaughlin DJ, McLaughlin EG, Lemke PA. Springer, Berlin Heidelberg New York; 2001:39-72.
  • [3]Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick RS, Schoch CL, Smirnov A, Spiegel FW: The revised classification of eukaryotes. J Eukaryot Microbiol 2012, 59(5):429-493.
  • [4]Lamour KH, Win J, Kamoun S: Oomycete genomics: new insights and future directions. FEMS Microbiol Lett 2007, 274(1):1-8.
  • [5]Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P: New insights into animal pathogenic oomycetes. Trends Microbiol 2008, 16(1):13-19.
  • [6]Fry W: Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 2008, 9(3):385-402.
  • [7]Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, et al.: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461(7262):393-398.
  • [8]Gijzen M: Runaway repeats force expansion of the Phytophthora infestans genome. Genome Biol 2009, 10(10):241. BioMed Central Full Text
  • [9]Raffaele S, Win J, Cano LM, Kamoun S: Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 2010, 11:637. BioMed Central Full Text
  • [10]Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DGO: From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol 2013, 14(6):211. BioMed Central Full Text
  • [11]Ghildiyal M, Zamore PD: Small silencing RNAs: an expanding universe. Nat Rev Genet 2009, 10(2):94-108.
  • [12]Claycomb JM: Ancient endo-siRNA pathways reveal new tricks. Curr Biol 2014, 24(15):R703-R715.
  • [13]Czech B, Hannon GJ: Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011, 12(1):19-31.
  • [14]Li Y, Luo J, Zhou H, Liao JY, Ma LM, Chen YQ, Qu LH: Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 2008, 36(19):6048-6055.
  • [15]Lee YS, Shibata Y, Malhotra A, Dutta A: A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009, 23(22):2639-2649.
  • [16]Sobala A, Hutvagner G: Transfer RNA-derived fragments: origins, processing and functions. Wiley Interdiscip Rev RNA 2011, 2(6):853-862.
  • [17]Gebetsberger J, Polacek N: Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 2013, 10(12):1798-1806.
  • [18]van West P, Kamoun S, van ’t Klooster JW, Govers F: Internuclear gene silencing in Phytophthora infestans. Mol Cell 1999, 3(3):339-348.
  • [19]Ah-Fong AM, Bormann-Chung CA, Judelson HS: Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 2008, 45(8):1197-1205.
  • [20]Vetukuri RR, Avrova AO, Grenville-Briggs LJ, Van West P, Söderbom F, Savenkov EI, Whisson SC, Dixelius C: Evidence for involvement of Dicer-like, Argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans. Mol Plant Pathol 2011, 12(8):772-785.
  • [21]Vetukuri RR, Åsman AK, Tellgren-Roth C, Jahan SN, Reimegård J, Fogelqvist J, Savenkov E, Söderbom F, Avrova AO, Whisson SC, Dixelius C: Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One 2012, 7(12):e51399.
  • [22]Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ, Carrington JC: Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS One 2013, 8(10):e77181.
  • [23]Whisson SC, Avrova AO, van West P, Jones JT: A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 2005, 6(2):153-163.
  • [24]Judelson HS, Tani S: Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 2007, 6(7):1200-1209.
  • [25]van West P, Shepherd SJ, Walker CA, Li S, Appiah AA, Grenville-Briggs LJ, Govers F, Gow NA: Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 2008, 154(5):1482-1490.
  • [26]Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC: Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol 2011, 115(12):1225-1233.
  • [27]Vetukuri RR, Åsman AK, Jahan SN, Avrova AO, Whisson SC, Dixelius C: Phenotypic diversification by gene silencing in Phytophthora plant pathogens. Commun Integr Biol 2013, 6(6):e25890.
  • [28]Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H: Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 2013, 342(6154):118-123.
  • [29]Flier WG, Turkensteen LJ, van den Bosch GBM, Vereijken PFG, Mulder A: Differential interaction of Phytophthora infestans on tubers of potato cultivars with different levels of blight resistance. Plant Pathol 2001, 50:292-301.
  • [30]Cooke DE, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, Grünwald NJ, Hein I, MacLean D, McNicol JW, Randall E, Oliva RF, Pel MA, Shaw DS, Squires JN, Taylor MC, Vleeshouwers VG, Birch PR, Lees AK, Kamoun S: Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog 2012, 8(10):e1002940.
  • [31]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  • [32]Lee SR, Collins K: Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 2005, 280(52):42744-42749.
  • [33]Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ: Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 2009, 151(4):2120-2132.
  • [34]Garcia-Silva MR, Frugier M, Tosar JP, Correa-Dominguez A, Ronalte-Alves L, Parodi-Talice A, Rovira C, Robello C, Goldenberg S, Cayota A: A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific cytoplasmic granules. Mol Biochem Parasitol 2010, 171(2):64-73.
  • [35]Franzén O, Arner E, Ferella M, Nilsson D, Respuela P, Carninci P, Hayashizaki Y, Åslund L, Andersson B, Daub CO: The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi. PLoS Negl Trop Dis 2011, 5(8):e1283.
  • [36]Tripathy S, Tyler BM: The repertoire of transfer RNA genes is tuned to codon usage bias in the genomes of Phytophthora sojae and Phytophthora ramorum. Mol Plant Microbe Interact 2006, 19(12):1322-1328.
  • [37]Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y: Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 2008, 133(1):116-127.
  • [38]Kirsebom LA: RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 2007, 89(10):1183-1194.
  • [39]Phizicky EM, Hopper AK: tRNA biology charges to the front. Genes Dev 2010, 24(17):1832-1860.
  • [40]Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM: tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008, 379(3):579-588.
  • [41]Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL: The Vienna RNA websuite. Nucleic Acids Res 2008, 36(Web Server issue):W70-W74.
  • [42]Thompson DM, Lu C, Green PJ, Parker R: tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008, 14(10):2095-2103.
  • [43]Durdevic Z, Schaefer M: tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 2013, 35(4):323-327.
  • [44]Reifur L, Garcia-Silva MR, Poubel SB, Alves LR, Arauco P, Buiar DK, Goldenberg S, Cayota A, Dallagiovanna B: Distinct subcellular localization of tRNA-derived fragments in the infective metacyclic forms of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2012, 107(6):816-819.
  • [45]Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS: Biases in small RNA deep sequencing data. Nucleic Acids Res 2014, 42(3):1414-1426.
  • [46]Avrova AO, Boevink PC, Young V, Grenville-Briggs LJ, van West P, Birch PR, Whisson SC: A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cell Microbiol 2008, 10(11):2271-2284.
  • [47]Garcia-Silva MR, Cabrera-Cabrera F, Güida MC, Cayota A: Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes 2012, 3(4):603-614.
  • [48]Durdevic Z, Mobin MB, Hanna K, Lyko F, Schaefer M: The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep 2013, 4(5):931-937.
  • [49]Ambikapathy J, Marshall JS, Hocart CH, Hardham AR: The role of proline in osmoregulation in Phytophthora nicotianae. Fungal Genet Biol 2002, 35(3):287-299.
  • [50]Grenville-Briggs LJ, Avrova AO, Bruce CR, Williams A, Whisson SC, Birch PR, van West P: Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genet Biol 2005, 42(3):244-256.
  • [51]Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA: Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010, 16(4):673-695.
  • [52]Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G: Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009, 15(12):2147-2160.
  • [53]Meister G: Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 2013, 14(7):447-459.
  • [54]Huang V, Li LC: Demystifying the nuclear function of Argonaute proteins. RNA Biol 2014, 11(1):18-24.
  • [55]Qu F, Ye X, Morris TJ: Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 2008, 105(38):14732-14737.
  • [56]Couvillion MT, Sachidanandam R, Collins K: A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev 2010, 24(24):2742-2747.
  • [57]Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X: Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009, 583(2):437-442.
  • [58]Thompson DM, Parker R: The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 2009, 185(1):43-50.
  • [59]Hillwig MS, Rizhsky L, Wang Y, Umanskaya A, Essner JJ, MacIntosh GC: Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals. BMC Evol Biol 2009, 9:170. BioMed Central Full Text
  • [60]Tay Y, Rinn J, Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature 2014, 505(7483):344-352.
  • [61]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
  • [62]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: 1000 Genome Project Data Processing Subgroup: The sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [63]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26(6):841-842.
  • [64]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [65]R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2008.
  文献评价指标  
  下载次数:101次 浏览次数:19次