期刊论文详细信息
BMC Genetics
Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus (Cophomantini, Hylinae, Hylidae)
Sanae Kasahara3  Célio Fernando Baptista Haddad1  Hideki Narimatsu3  Juliana Zina2  Simone Lilian Gruber3 
[1] UNESP, Universidade Estadual Paulista, Instituto de Biociências, Departamento de Zoologia, Av. 24A, 1515, 13506-900, Rio Claro, SP, Brazil;Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Rua José Moreira Sobrinho, s/n, 45206-000, Jequié, BA, Brazil;UNESP, Universidade Estadual Paulista, Instituto de Biociências, Departamento de Biologia, Av. 24A, 1515, 13506-900, Rio Claro, SP, Brazil
关键词: Phylogeny;    CMA3;    C-band;    Ag-NOR;    FISH;    BrdU;    Amphibian;   
Others  :  1122481
DOI  :  10.1186/1471-2156-13-28
 received in 2012-01-10, accepted in 2012-04-15,  发布年份 2012
PDF
【 摘 要 】

Background

The frogs of the Tribe Cophomantini present, in general, 2n = 24 karyotype, but data on Aplastodiscus showed variation in diploid number from 2n = 24 to 2n = 18. Five species were karyotyped, one of them for the first time, using conventional and molecular cytogenetic techniques, with the aim to perform a comprehensive comparative analysis towards the understanding of chromosome evolution in light of the phylogeny.

Results

Aplastodiscus perviridis showed 2n = 24, A. arildae and A. eugenioi, 2n = 22, A. callipygius, 2n = 20, and A. leucopygius, 2n = 18. In the metaphase I cells of two species only bivalents occurred, whereas in A. arildae, A. callipygius, and A. leucopygius one tetravalent was also observed besides the bivalents. BrdU incorporation produced replication bands especially in the largest chromosomes, and a relatively good banding correspondence was noticed among some of them. Silver impregnation and FISH with an rDNA probe identified a single NOR pair: the 11 in A. perviridis and A. arildae; the 6 in A. eugenioi; and the 9 in A. callipygius and A. leucopygius. C-banding showed a predominantly centromeric distribution of the heterochromatin, and in one of the species distinct molecular composition was revealed by CMA3. The telomeric probe hybridised all chromosome ends and additionally disclosed the presence of telomere-like sequences in centromeric regions of three species.

Conclusions

Based on the hypothesis of 2n = 24 ancestral karyotype for Aplastodiscus, and considering the karyotype differences and similarities, two evolutionary pathways through fusion events were suggested. One of them corresponded to the reduction of 2n = 24 to 22, and the other, the reduction of 2n = 24 to 20, and subsequently to 18. Regarding the NOR, two conditions were recognised: plesiomorphy, represented by the homeologous small-sized NOR-bearing pairs, and derivation, represented by the NOR in a medium-sized pair. In spite of the apparent uniformity of C-banding patterns, heterogeneity in the molecular composition of some repetitive regions was revealed by CMA3 staining and by interstitial telomeric labelling. The meiotic tetravalent might be due to minute reciprocal translocations or to non-chiasmatic ectopic pairing between terminal repetitive sequences. The comparative cytogenetic analysis allowed to outline the chromosome evolution and contributed to enlighten the relationships within the genus Aplastodiscus.

【 授权许可】

   
2012 Gruber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214020241124.pdf 2907KB PDF download
Figure 7 . 22KB Image download
Figure 6 . 27KB Image download
Figure 5 . 40KB Image download
Figure 4 . 19KB Image download
Figure 3 . 35KB Image download
Figure 2 . 35KB Image download
Figure 1 . 36KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6 .

Figure 7 .

【 参考文献 】
  • [1]Garcia PCA, Caramaschi U, Kwet A: O status taxonômico deHyla cochranaeMertens e a recaracterização deAplastodiscusA. Lutz (Anura, Hylidae). Revista Brasileira de Zoologia 2001, 18:1197-1218.
  • [2]Caramaschi U: AplastodiscusA. Lutz, 1950, um sinônimo júnior deHylaLaurenti, 1768 (Amphibia, Anura, Hylidae) [abstract]. Congresso Brasileiro de Zoologia 1983, 10:307.
  • [3]Cruz CAG, Peixoto AL: Espécies verdes deHyla: o complexo “albofrenata” (Amphibia, Anura, Hylidae). Arquivos da Universidade Federal Rural do Rio de Janeiro 1985, 8:59-70.
  • [4]Haddad CFB, Faivovich J, Garcia PCA: The specialized reproductive mode of the treefrogAplastodiscus perviridis(Anura: Hylidae). Amphib-reptil 2005, 26:87-92.
  • [5]Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC: Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat His 2005, 294:1-240.
  • [6]Wiens JJ, Kuczynski CA, Hua X, Moen D: An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol 2010, 55:871-882.
  • [7]Frost DR: Amphibians of the world: an on-line reference. V5.5.
  • [8]Bogart JP: Evolution of anuran karyotypes. In Evolutionary Biology of Anurans. Edited by Vial JL. University of Missouri Press, Columbia; 1973:337-349.
  • [9]Carvalho KA, Garcia PCA, Recco-Pimentel SM: NOR dispersion, telomeric sequence detection in centromeric regions and meiotic multivalent configurations in species of theAplastodiscus albofrenatusgroup (Anura, Hylidae). Cytogenet Genome Res 2009, 126:359-367.
  • [10]Carvalho KA, Garcia PCA, Recco-Pimentel SM: Cytogenetic comparison of tree frogs of the genusAplastodiscusand theHypsiboas fabergroup (Anura, Hylidae). Genet Mol Res 2009, 8:1498-1508.
  • [11]Schmid M, Steinlein C, Nanda I, Epplen JT: Chromosome banding in Amphibia. In Cytogenetics of Amphibians and Reptiles. Edited by Olmo E. Birkhauser Verlag, Basel; 1990:21-45.
  • [12]Schmid M, Steinlein C, Bogart JP, Feichtinger W, León P, La Marca E, Diaz LM, Sans A, Chen S-H, Hedges SB: The chromosomes of Terraranan frogs: insights into vertebrate cytogenetics. Cytogenet Genome Res 2010, 130–131:1-568.
  • [13]Baldissera FA Jr, Oliveira PSL, Kasahara S: Cytogenetics of four BrazilianHylaspecies (Amphibia-Anura) and description of a case with a supernumerary chromosome. Rev Bras Genet 1993, 16:335-345.
  • [14]Schmid M: Chromosome banding in Amphibia, I. Constitutive heterochromatin and nucleolus organizers regions in Bufo and Hyla. Chromosoma 1978, 66:361-388.
  • [15]Silva APZ, Haddad CFB, Kasahara S: Chromosomal studies on five species of the genusLeptodactylusFitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 2000, 103:25-38.
  • [16]Howell WM, Black DA: Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: 1-step method. Experientia 1980, 36:1014-1015.
  • [17]Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 1972, 75:304-306.
  • [18]Christian A, McNiel E, Robinson J, Drabek J, LaRue C, Wadren C, Bedford JA: A versatile image analysis approach for simultaneous chromosome identification and localization of FISH probes. Cytogenet Cell Genet 1998, 82:172-179.
  • [19]Dutrillaux B, Couturier J: La Pratique de l´Analyse Chromosomique. Masson, Paris; 1981.
  • [20]Matsuda Y, Chapman VM: Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 1995, 16:261-272.
  • [21]Meunier-Rotival M, Cortadas J, Macaya G: Isolation and organization of calf ribosomal DNA. Nucleic Acids Res 1979, 6:2109-2123.
  • [22]Pinkel D, Straume T, Gray JW: Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 1986, 83:2934-2938.
  • [23]Green DM, Sessions SK: Nomenclature for chromosomes. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. Academic Press, San Diego; 1991:431-432.
  • [24]Green DM, Sessions SK: Karyology and Cytogenetics. In Amphibian Biology. Volume 7. Edited by Heatwole H, Tyler M. Surrey Beatty and Sons, Chipping Norton; 2007:2756-2841.
  • [25]Catroli GF, Kasahara S: Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. Publicatio: Ciências Biológicas e da Saúde 2009, 15:67-86.
  • [26]Wiley JE: Chromosome banding patterns of treefrogs (Hylidae) of the Eastern United States. Herpetologica 1982, 38:507-520.
  • [27]King M, Contreras N, Honeycutt RL: Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18 S + 28 S in-situ hybridization. Genetica 1990, 80:17-29.
  • [28]Anderson K: Chromosome evolution in HolarcticHylatreefrogs. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. Academic Press, San Diego; 1991:299-331.
  • [29]Kasahara S, Silva APZ, Gruber SL, Haddad CFB: Comparative cytogenetic analysis on four tree frog species (Anura, Hylidae, Hylinae) from Brazil. Cytogenet Genome Res 2003, 103:155-162.
  • [30]Gruber SL, Haddad CFB, Kasahara S: Chromosome banding in three species ofHypsiboas(Hylidae, Hylinae), with special reference to a new case of B-chromosome in anuran frogs and to the reduction of the diploid number of 2n = 24 to 2n = 22 in the genus. Genetica 2007, 130:281-291.
  • [31]Cardozo DE, Leme DM, Bortoleto JF, Catroli GF, Baldo D, Faivovich J, Kolenc F, Silva APZ, Borteiro C, Haddad CFB, Kasahara S: Karyotypic data on 28 species ofScinax(Amphibia: Anura: Hylidae): diversity and informative variation. Copeia 2011, 2:251-263.
  • [32]Catroli GF, Faivovich J, Haddad CFB, Kasahara S: Conserved karyotypes in Cophomantini: cytogenetic analysis of 12 species from 3 species groups ofBokermannohyla(Amphibia: Anura: Hylidae). J Herpetol 2011, 45:120-128.
  • [33]Fagundes V, Yonenaga-Yassuda Y: Evolutionary conservation of whole homeologous chromosome arms in the Akodont rodentsBolomysandAkodon(Muridae, Sigmodontinae): maintenance of interstitial telomeric segments (ITBs) in recent event of centric fusion. Chrom Res 1998, 6:643-648.
  • [34]Ventura K, O’Brien PCM, Yonenaga-Yassuda Y, Ferguson-Smith MA: Chromosome homologies of the highly rearranged karyotypes of fourAkodonspecies (Rodentia, Cricetidae) resolved by reciprocal chromosome painting: the evolution of the lowest diploid number in rodents. Chrom Res 2009, 17:1063-1078.
  • [35]Meyne J, Baker AJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyziz RK: Distribution of non-telomeric sites of the (TTAGGG)ntelomeric sequence in vertebrate chromosomes. Chromosoma 1990, 99:3-10.
  • [36]Wiley JE, Meyne J, Little ML, Stout JC: Intersticial hybridization sites of the (TTAGGG)ntelomeric sequence on the chromosomes of some North American hylid frogs. Cytogenet Cell Genet 1992, 61:55-57.
  • [37]Lourenço LB, Recco-Pimentel SM, Cardoso AJ: Polymorphism of the nucleolus organizer regions (NORs) inPhysalaemus petersi(Amphibia, Anura, Leptodactylidae) detected by silver staining and fluorescence in situ hybridization. Chrom Res 1998, 6:621-628.
  • [38]Siqueira S Jr, Ananias F, Recco-Pimentel SM: Cytogenetics of three Brazilian species ofEleutherodactylus(Anura, Leptodactylidae) with 22 chromosomes and re-analysis of multiple translocations inE.binotatus. Genet Mol Biol 2004, 27:363-372.
  • [39]Campos JRC, Ananias F, Haddad CFB, Kasahara S: Karyotypic similarity amongBarycholos ternetziand five species of the genusEleutherodactylusfrom southeastern Brazil (Anura, Brachycephalidae). Micron 2006, 39:151-159.
  • [40]Gazoni T, Gruber SL, Silva APZ, Araújo OGS, Strüssmann C, Haddad CFB, Kasahara S: Comparative cytogenetic analyses ofLeptodactylus(Amphibia, Anura, Leptodactylidae), with description of a new karyotype and a case of multiple sequential translocations [abstract]. Reunião Brasileira de Citogenética 2011, 2:22.
  • [41]Grützner F, Rens W, Tsend-Ayush E, El-Mogharbell N, O’Brien PCM, Jones RC, Ferguson-Smith MA, Graves JAM: In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 2004, 3021:1-5.
  文献评价指标  
  下载次数:77次 浏览次数:45次