期刊论文详细信息
BMC Microbiology
Identification of genes involved in serum tolerance in the clinical strain Cronobacter sakazakii ES5
Angelika Lehner1  Roger Stephan1  Katrin Zurfluh1  Taurai Tasara1  Sarah Schwizer1 
[1] Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
关键词: Expression analysis;    Complementation;    PCR;    Identification;    Tn5-mutagenesis;    Serum tolerance;    Clinical isolate;    Cronobacter sakazakii ES5;   
Others  :  1144418
DOI  :  10.1186/1471-2180-13-38
 received in 2012-10-26, accepted in 2013-02-14,  发布年份 2013
PDF
【 摘 要 】

Background

Cronobacter spp. are opportunistic pathogens that can cause septicemia and infections of the central nervous system primarily in premature, low-birth weight and/or immune-compromised neonates. Serum resistance is a crucial virulence factor for the development of systemic infections, including bacteremia. It was the aim of the current study to identify genes involved in serum tolerance in a selected Cronobacter sakazakii strain of clinical origin.

Results

Screening of 2749 random transposon knock out mutants of a C. sakazakii ES 5 library for modified serum tolerance (compared to wild type) revealed 10 mutants showing significantly increased/reduced resistance to serum killing. Identification of the affected sites in mutants displaying reduced serum resistance revealed genes encoding for surface and membrane proteins as well as regulatory elements or chaperones. By this approach, the involvement of the yet undescribed Wzy_C superfamily domain containing coding region in serum tolerance was observed and experimentally confirmed. Additionally, knock out mutants with enhanced serum tolerance were observed. Examination of respective transposon insertion loci revealed regulatory (repressor) elements, coding regions for chaperones and efflux systems as well as the coding region for the protein YbaJ. Real time expression analysis experiments revealed, that knock out of the gene for this protein negatively affects the expression of the fimA gene, which is a key structural component of the formation of fimbriae. Fimbriae are structures of high immunogenic potential and it is likely that absence/truncation of the ybaJ gene resulted in a non-fimbriated phenotype accounting for the enhanced survival of this mutant in human serum.

Conclusion

By using a transposon knock out approach we were able to identify genes involved in both increased and reduced serum tolerance in Cronobacter sakazakii ES5. This study reveals first insights in the complex nature of serum tolerance of Cronobacter spp.

【 授权许可】

   
2013 Schwizer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330133926518.pdf 480KB PDF download
Figure 3. 44KB Image download
Figure 2. 58KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H: Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov. subsp. dublinensis subsp. nov., C. dublinensis sp. nov. subsp. lausannensis subsp. nov., and C. dublinensis sp. nov. subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 2008, 58:1442-1447.
  • [2]Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ: Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 2012, 62:1277-1283.
  • [3]Bowen AB, Braden CR: Invasive Enterobacter disease in infants. Emerg Infect Dis 2006, 12:1185-1189.
  • [4]Mange JP, Stephan R, Borel N, Wol d P, Kim KS, Pospischil A, Lehner A: Adhesive propertries of Enterobacter sakazakii to numan epithelial and brain microvascular endothelial cells. BMC Microbiol 2006, 6:58. BioMed Central Full Text
  • [5]Joiner KA: Complement evasion by bacteria and parasites. Annu Rev Microbiol 1988, 42:201-230.
  • [6]Taylor PW: Bactericidal and bacteriolytic activity of serum against gram-negative bacteria. Microbiol Rev 1983, 47:4683.
  • [7]Rautemaa R, Meri S: Complement-resistance mechanisms of bacteria. Microb Infect 1999, 1:785-794.
  • [8]Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasadarao N: Brain damage in newborn rat model of meningitis by Enterobacter sazakazii: a role for outer membrane protein A. Lab Invest 2009, 89:263-277.
  • [9]Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, Datta AR, McCardell BA, Tall BD: Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immunol 2011, 79:1578-1587.
  • [10]Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Forsythe S, Badger JL: Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiol 2007, 153:3538-3547.
  • [11]Johler S, Stephan R, Hartmann I, Kuehner KA, Lehner A: Yellow pigmentation in Cronobacter sakazakii ES5: genes involved and influence on persistence and growth under environmental stress. Appl Environ Microbiol 2010, 76:1053-1061.
  • [12]Mouslim C, Delgado M, Groisman EA: Activation of the RcsC YojN/RcsB phophorelay system attenuates Salmonella virulence. Mol Microbiol 2004, 54:386-395.
  • [13]Hartmann I, Carranza P, Lehner A, Stephan R, Eberl L, Riedel K: Genes involved in Cronobacter sakazakii biofilm formation. Appl Environ Microbiol 2010, 76:2251-2261.
  • [14]Sun Y, Wang M, Liu H, Wang J, He X, Zheng J, Guo X, Cao B, Wang L: Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl Environ Microbiol 2011, 77:2209-2214.
  • [15]Sun Y, Wang M, Wang Q, Cao B, Zhe X, Li K, Feng L, Wang L: Genetic analysis of the Cronobacter sakazakii O4 to O7 O-antigen gene clusters and Development of a PCR assay for identification of all C. sakazakii O serotypes. Appl Environ Microbiol 2012, 78:3966-3974.
  • [16]Dang W, Zhang M, Sun L: Edwardsiella tarda DnaJ is a virulence-associated molecular chaperone with immunoprotective potential. Fish Shellfish Immun 2011, 31:182-188.
  • [17]Ghora BK, Apirion D: Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell 1978, 15:1055-1066.
  • [18]Li Z, Deutscher MP: RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 2002, 8:97-109.
  • [19]Li Z, Pandit S, Deutscher MP: RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 1999, 18:2878-2885.
  • [20]Ow M, Kushner SR: Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 2002, 16:1102-1115.
  • [21]Lee K, Zhan X, Gao J, Qiu J, Feng Y, Meganathan R, Cohen SN, Georgiou G: RraA, a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 2003, 114:623-634.
  • [22]Genevaux P, Wawrzynow A, Zylicz M, Georgopoulos C, Kelley WL: DjlA is a third DnaK co-chaperone of Escherichia coli, and DjlA-mediated induction of colanic acid capsule requires DjlA-DnaK interaction. J Biol Chem 2001, 276:7906-7912.
  • [23]Majdalanim N, Gottesman S: The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005, 59:379-405.
  • [24]Shiba Y, Matsumoto K, Hara H: DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genetic System 2006, 81:51-56.
  • [25]Garcia-Contreras R, Zhang XS, Kim Y, Wood TK: Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One 2008, 3:2394.
  • [26]Klemm P, Schembri MA: Fimbral surface display systems in bacteria: from vaccines to random libraries. Microbiology 2000, 146:3025-3032.
  • [27]National Center for biotechnology Informationhttp://blast.ncbi.nlm.nih.gov/Blast.cgi webcite
  • [28]Randegger CC, Keller A, Irla M, Wada A, Hächler H: Contribution of natural amino acid substitutions in SHV extended-spectrum beta-lactamases to resistance against various betalactams. Antimicrob Agents Chemother 2000, 44:2759-2763.
  • [29]Arguedas-Villa C, Stephan R, Tasara T: Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins. Food Microbiol 2010, 27:653-660.
  • [30]Tasara T, Stephan R: Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 2007, 269:265-272.
  文献评价指标  
  下载次数:43次 浏览次数:19次