期刊论文详细信息
BMC Genomics
Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum
Eliane Ferreira Noronha4  Cirano José Ulhoa2  Georgios Joannis Pappas4  Robert Neil Gerard Miller4  Alexandre Siqueira Guedes Coelho1  Marcelo Henrique Soller Ramada3  Andrei Stecca Steindorff4 
[1] Escola de Agronomia e Engenharia de Alimentos, Universidade Federal de Goiás, Campus Samambaia, P.O. Box 131CEP 74001-970 Goiânia, GO, Brasil;Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás, Campus Samambaia, Instituto de Ciências Biológicas, CEP 74.090-900 Goiânia, GO, Brazil;EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372 CEP 70.770-900 Brasília, DF, Brazil;Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, CEP 70.910-900 Brasília, DF, Brazil
关键词: Mycoparasitism;    Gene expression;    RNA-seq;    S. sclerotiorum;    T. harzianum;   
Others  :  1217674
DOI  :  10.1186/1471-2164-15-204
 received in 2013-11-28, accepted in 2014-03-06,  发布年份 2014
PDF
【 摘 要 】

Background

The species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum.

Results

Data obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. To validate the expression profile, RT-qPCR was performed using 20 randomly chosen genes. RT-qPCR expression profiles were in complete agreement with the RNA-Seq data for 17 of the genes evaluated. The other three showed differences at one or two growth times. During the confrontation assay, some genes were up-regulated during and after contact, as shown in the presence of SSCW which is commonly used as a model to mimic this interaction.

Conclusions

The present study is the first initiative to use RNA-seq for identification of differentially expressed genes in T. harzianum strain TR274, in response to the phytopathogenic fungus S. sclerotiorum. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against S.sclerotiorum. The RNA-seq data presented will facilitate improvement of the annotation of gene models in the draft T. harzianum genome and provide important information regarding the transcriptome during this interaction.

【 授权许可】

   
2014 Steindorff et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708005914771.pdf 2024KB PDF download
Figure 6. 66KB Image download
Figure 5. 84KB Image download
Figure 4. 210KB Image download
Figure 3. 61KB Image download
Figure 2. 45KB Image download
Figure 1. 143KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Boland GJ, Hall R: Index of plant hosts of Sclerotinia sclerotiorum. Can J Pl Pathol 1994, 16:93-108.
  • [2]Attanayake RN, Carter PA, Jiang D, Del Río-Mendoza L, Chen W: Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology 2013, 103(7):750-761.
  • [3]Sun P, Yang XB: Light, temperature, and moisture effects on Apothecium production of Sclerotinia sclerotiorum. Plant Dis 2000, 84:1287-1293.
  • [4]Lopes FA, Steindorff AS, Geraldine AM, Brandão RS, Monteiro VN, Lobo M Jr, Coelho AS, Ulhoa CJ, Silva RN: Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 2012, 116(7):815-824.
  • [5]Qualhato TF, Lopes FA, Steindorff AS, Brandão RS, Jesuino RS, Ulhoa CJ: Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 2013, 35(9):1461-1468.
  • [6]Geraldine AM, Lopes FAC, Carvalho DDC, Barbosa ET, Rodrigues AR, Brandão RS, Ulhoa CJ, Lobo-Junior M: Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol Control 2013, 67(3):308-316.
  • [7]Lorito M, Woo SL, Harman GE, Monte E: Translational research on Trichoderma: from Omics to the field. Ann Rev Phytopathol 2010, 48:395-417.
  • [8]Hermosa R, Viterbo A, Chet I, Monte E: Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158:17-25.
  • [9]Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP: Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 2011, 16;9(10):749-759.
  • [10]Vizcaíno JA, Redondo J, Suarez MB, Cardoza RE, Hermosa R, Gonzales FJ, Rey M, Monte E: Generation, annotation and analysis of ESTs from four different Trichoderma strains grown under conditions related to biocontrol. Appl Microbiol Biotechnol 2007, 75:853-862.
  • [11]Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez M, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP: Transcriptomic response of the mycoparasitic fungus Trichodermaatroviride to the presence of a fungal prey. BMC Genomics 2009, 10:567. BioMed Central Full Text
  • [12]Steindorff AS, Silva RN, Coelho ASG, Noronha EF, Ulhoa CJ: Trichoderma harzianum expressed sequence tags for identification of genes with putative roles in mycoparasitism against F. solani. Biol Control 2012, 61(2):134-140.
  • [13]Vieira PM, Coelho AS, Steindorff AS, De Siqueira SJ, Silva Rdo N, Ulhoa CJ: Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 2013, 14:177. BioMed Central Full Text
  • [14]Monteiro VN, Silva RN, Steindorff AS, Costa FT, Noronha EF, Ricart CAO, Sousa MV, Vainstein MH, Ulhoa CJ: New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microb 2010, 61:298-305.
  • [15]Rubio MB, Domínguez S, Monte E, Hermosa R: Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. Microbiology 2012, 158(Pt 1):119-128.
  • [16]Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A: Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 2011, 77(13):4361-4370.
  • [17]Samolski I, de Luis A, Vizcaíno JA, Monte E, Suárez MB: Gene expression analysis of the biocontrol fungus Trichodermaharzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol 2009, 9:217. BioMed Central Full Text
  • [18]Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS: miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinform 2009, 10:328. BioMed Central Full Text
  • [19]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.
  • [20]Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011, 12(2):87-98.
  • [21]Martin JA, Wang Z: Next-generation transcriptome assembly. Nat Rev Genet 2011, 12(10):671-682.
  • [22]Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I: The genome portal of the Department of energy joint genome Institute. Nucleic Acids Res 2012, 40:26-32.
  • [23]Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008, 18:610-621.
  • [24]Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J: The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 2010, 10:94. BioMed Central Full Text
  • [25]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology: the gene ontology consortium. Nat Genet 2000, 25(1):25-29.
  • [26]Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [27]Free SJ: Fungal cell wall organization and biosynthesis. Adv Gene 2013, 81:33-82.
  • [28]Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM: Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 1996, 6(3):337-345.
  • [29]Elad Y, Kapat A: The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 1999, 105:177-189.
  • [30]Druzhinina IS, Shelest E, Kubicek CP: Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 2012, 337(1):1-9.
  • [31]Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS: Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 2013, 14:121. BioMed Central Full Text
  • [32]Wang Y, Guo EW, Yu WG, Han F: Purification and characterization of a new alginate lyase from a marine bacterium Vibrio sp. Biotech Let 2013, 35(5):703-708.
  • [33]Skamnaki VT, Peumans WJ, Kantsadi AL, Cubeta MA, Plas K, Pakala S, Zographos SE, Smagghe G, Nierman WC, Van Damme EJ, Leonidas DD: Structural analysis of the Rhizoctonia solani agglutinin reveals a domain-swapping dimeric assembly. FEBS J 2013, 280(8):1750-1763.
  • [34]Samolski I, Rinco AM, Pinzo LM, Viterbo A, Monte E: The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 2012, 158:129-138.
  • [35]Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS: Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 2008, 8:4. BioMed Central Full Text
  • [36]Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, Von Öhren H, Baker SE, Kubicek CP: Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation, and processing. J Mol Evol 2011, 72:339-351.
  • [37]MacIntosh GC, Bariola PA, Newbigin E, Green PJ: Characterization of Rny1, the saccharomyces cerevisiae member of the T2 RNase family of RNases: unexpected functions for ancient enzymes? Proc Natl Acad Sci USA 2001, 98(3):1018-1023.
  • [38]Pao SS, Paulsen IT, Saier MH: Major facilitator superfamily. Microbiol Mol Biol R 1998, 62:1-34.
  • [39]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012, 40:W622-W627.
  • [40]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14:R36. BioMed Central Full Text
  • [41]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [42]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
  • [43]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 2001, 25(4):402-408.
  文献评价指标  
  下载次数:111次 浏览次数:34次