期刊论文详细信息
BMC Pulmonary Medicine
Possible molecular mechanisms linking air pollution and asthma in children
Maria Francesca Patria1  Silvia Consolo1  Erica Nazzari1  Valentina Preti1  Mara Lelii1  Rossana Tenconi1  Susanna Esposito1 
[1] Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy
关键词: Respiratory tract infection;    Pediatric pulmonology;    Particulate matter;    Lung disease;    Asthma;    Air pollution;   
Others  :  866530
DOI  :  10.1186/1471-2466-14-31
 received in 2013-12-06, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

Background

Air pollution has many effects on the health of both adults and children, but children’s vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics.

Results

Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children’s susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections.

Conclusions

Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease in asthmatic and healthy children.

【 授权许可】

   
2014 Esposito et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727074500538.pdf 183KB PDF download
【 参考文献 】
  • [1]Trasande L, Thurston GD: The role of air pollution in asthma and other pediatric morbidities. J Allergy Clin Immunol 2005, 115:689-699.
  • [2]Pope CA, Dockery DW: Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006, 56:709-742.
  • [3]Valent F, Little D, Bertollini R, Nemer LE, Barbone F, Tamburlini G: Burden of disease attributable to selected environmental factors and injury among children and adolescents in Europe. Lancet 2004, 363:2032-2039.
  • [4]Pinkerton K, Joad J: Influence of air pollution on respiratory health during perinatal development. Clin Exp Pharmacol Physiol 2006, 33:269-272.
  • [5]Heinrich J, Slama R: Fine particles, a major threat to children. Intern J Hyg Environm Health 2007, 210:617-622.
  • [6]Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, McConnell R, Kuenzli N, Lurmann F, Rappaport E, Margolis H, Bates D, Peters J: The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 2004, 351:1057-1067.
  • [7]Mölter A, Agius RM, De Vocht F, Lindley S, Gerrard W, Lowe L, Belgrave D, Custovic A, Simpson A: Long term exposure to PM 10 and NO2 in association with lung volume and airway resistance in the MAAS birth cohort. Environ Health Perspect 2013, 121:1232-1238. Epub Jun 18
  • [8]Gao Y, Chan EY, Li LP, He QQ, Wong TW: Chronic effects of ambient air pollution on lung function among Chinese children. Arch Dis Child 2013, 98:128-137.
  • [9]Schultz E, Gruzieva O, Bellander T, Bottai M, Hallberg G, Kull I, Melen E: Traffic-related air pollution and lung function in children at 8 years of age: a birth cohort study. Am J Respir Crit Care Med 2012, 186:1286-1291.
  • [10]Gauderman W, Vora H, McConnell R, Berhane K, Gilliland F, Thomas D: Effect of exposure to traffic on lung development from 10 to 18 years of age: a color study. Lancet 2007, 369:571-577.
  • [11]Bateson TF, Schwartz J: Children’s response to air pollutants. J Toxicol Environ Health A 2008, 71:238-243.
  • [12]Nordling E, Berglind N, Melén E, Emenius G, Hallberg J, Nyberg F, Pershagen G, Svartengren M, Wickman M, Bellander T: Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology 2008, 19:401-408.
  • [13]Brauer M, Hoek G, Smit HA, De Jongste JC, Gerritsen J, Postma DS, Kerkhof M, Brunekreef B: Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 2007, 29:879-888.
  • [14]Gehring U, Wijga AH, Brauer M, Fischer P, De Jongste JC, Kerkhof M, Oldenwening M, Smit HA, Brunekreef B: Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med 2010, 181:596-603.
  • [15]Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, Moskalenko V, Pershagen G, Bellander T: Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology 2013, 24:54-56.
  • [16]Ezzati M, Kammes D: Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study. Lancet 2001, 358:619-624.
  • [17]Barnett AG, Williams GM, Schwartz J, Neller AH, Best TL, Petroeschevsky AL, Simpson RW: Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med 2005, 171:1272-1278.
  • [18]Migliore E, Berti G, Galassi C, Pearce N, Forastiere F, Calabrese R, Armenio L, Biggeri A, Bisanti L, Bugiani M, Cadum E, Chellini E, Dell’Orco V, Giannella G, Sestini P, Cordo G, Pistelli R, Viegi G, Ciccone G and SIDRIA −2 Collaborative Group: Respiratory symptoms in children living near busy roads and their relationhip to vehicular traffic: results of an Italian multicenter study (SIDRIA 2). Environ Health 2009, 8:27. BioMed Central Full Text
  • [19]Hoek G, Pattenden S, Willers S, Antova T, Fabianova E, Braun-Fahrländer C, Forastiere F, Gehring U, Luttmann-Gibson H, Grize L, Heinrich J, Houthuijs D, Janssen N, Katsnelson B, Kosheleva A, Moshammer H, Neuberger M, Privalova L, Rudnai P, Speizer F, Slachtova H, Tomaskova H, Zlotkowska R, Fletcher T: PM10, and children’s respiratory symptoms and lung function in the PATY study. Eur Respir J 2012, 40:538-547.
  • [20]Jedrychowski WA, Perera FP, Spengler JD, Mroz E, Stigter L, Flak E, Majewska R, Klimaszewska-Rembiasz M, Jacek R: Intrauterine exposure to fine particular matter as a risk factor for increased susceptibility to acute broncho-pulmonary infections in early childhood. Int J Hyg Environ Health 2013, 216:395-401.
  • [21]Peden DB, Bush RK: Advances in environmental and occupational disorders in 2012. J Allergy Clin Immunol 2013, 131:668-674.
  • [22]Lovinsky-Desir S, Miller RL: Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep 2012, 12:211-220.
  • [23]Patel MM, Chillrud SN, Deepti KC, Ross JM, Kinney PL: Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents. Environ Res 2013, 121:71-78.
  • [24]Brown MS, Sarnat SE, DeMuth KA, Brown LA, Whitlock DR, Brown SW, Tolbert PE, Fitzpatrick AM: Residential proximity to a major roadway is associated with features of asthma control in children. PLoS One 2012, 7:e37044.
  • [25]Berhane K, Zhang Y, Linn WS, Rappaport EB, Bastain TM, Salam MT, Islam T, Lurmann F, Gilliland FD: The effect of ambient air pollution on exhaled nitric oxide in the Children’s Health Study. Eur Respir J 2011, 37:1029-1036.
  • [26]Heinrich J, Wichmann HE: Traffic related pollutants in Europe and their effect on allergic disease. Curr Opin Allergy Clin Immunol 2004, 4:341-348.
  • [27]Sanchez D, Tsien A, Fleming J, Saxon A: Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol 1997, 158:2406-2413.
  • [28]Diaz-Sanchez D: The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 1997, 52(38 Suppl):52-58.
  • [29]Diaz-Sanchez D, Penichet-Garcia M, Saxon A: Diesel exhaust particles directly induce activated masT-cells to degranulate and increase histamine levels and symptom severity. J Allergy Clin Immunol 2000, 106:1140-1146.
  • [30]Van Zijverden M, Granum B: Adjuvant activity of particulate pollutants in different mouse models. Toxicology 2000, 152:69-77.
  • [31]Taylor A, Verhagen J, Akdis CA, Akdis M: T regulatory cells and allergy. Microbes Infect 2005, 7:1049-1055.
  • [32]Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, Tager I: Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 2010, 126:845-852.
  • [33]Koppelman GH, Nawijn MC: Recent advances in the epigenetics and genomics of asthma. Curr Opin Allergy Clin Immunol 2011, 11:414-419.
  • [34]Holloway JW, Savarimuthu FS, Fong KM, Yang IA: Genomics and the respiratory effects of air pollution exposure. Respirology 2012, 17:590-600.
  • [35]Carlsten C, Melén E: Air pollution, genetics, and allergy: an update. Curr Opin Allergy Clin Immunol 2012, 12:455-461.
  • [36]Erridge C: Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 2010, 87:989-999.
  • [37]Becker S, Dailey L, Soukup JM, Silbajoris R, Devlin RB: TLR-2 is involved in airway epithelial cell response to air pollution particles. Toxicol Appl Pharmacol 2005, 203:45-52.
  • [38]Becker S, Fenton MJ, Soukup JM: Involvement of microbial components and toll-like receptors 2 and 4 in cytokine responses to air pollution particles. Am J Respir Cell Mol Biol 2002, 27:611-618.
  • [39]Auerbach A, Hernandez ML: The effect of environmental oxidative stress on airway inflammation. Curr Opin Allergy Clin Immunol 2012, 12:133-139.
  • [40]Hollingsworth JW, Maruoka S, Li Z, Potts EN, Brass DM, Garantziotis S, Fong A, Foster WM, Schwartz DA: Ambient ozone primes pulmonary innate immunity in mice. J Immunol 2007, 179:4367-4375.
  • [41]Williams AS, Leung SY, Nath P, Khorasani NM, Bhavsar P, Issa R, Mitchell JA, Adcock IM, Chung KF: Role of TLR2, TLR4, and MyD88 in murine ozone-induced airway hyperresponsiveness and neutrophilia. J Appl Physiol 2007, 103:1189-1195.
  • [42]Kerkhof M, Postma DS, Brunekreef B, Reijmerink NE, Wijga AH, De Jongste JC, Gehring U, Koppelman GH: Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related airpollution on childhood asthma. Thorax 2010, 65:690-697.
  • [43]Liang J, Jiang D, Jung Y, Xie T, Ingram J, Church T, Degan S, Leonard M, Kraft M, Noble PW: Role of hyaluronan and hyaluronan-binding proteins in human asthma. J Allergy Clin Immunol 2011, 128:403-411.e3.
  • [44]Liu L, Poon R, Chen L, Frescura AM, Montuschi P, Ciabattoni G, Wheeler A, Dales R: Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009, 117:668-674.
  • [45]Perzanowski MS, Chew GL, Divjan A, Jung KH, Ridder R, Tang D, Diaz D, Goldstein IF, Kinney PL, Rundle AG, Camann DE, Perera FP, Miller RL: Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. J Allergy Clin Immunol 2013, 131:886-893.
  • [46]Alexis NE, Zhou H, Lay JC, Harris B, Hernandez ML, Lu TS, Bromberg PA, Diaz-Sanchez D, Devlin RB, Kleeberger SR, Peden DB: The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in human subjects. J Allergy Clin Immunol 2009, 124:1222-1228.
  • [47]Islam T, Berhane K, McConell R, Gauderman WJ, Avol E, Peters JM, Gilliland FD: Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax 2009, 64:197-202.
  • [48]Li YF, Gauderman WJ, Conti DV, Lin PC, Avol E, Gilliland FD: Glutathione S-transferase P1, maternal smoking, and asthma in children: a haplotype-based analysis. Environ Health Perspect 2008, 116:409-415.
  • [49]Breton CV, Salam MT, Vora H, Gaudermann WJ, Gilliand FD: Genetic variation in the glutathione synthesis pathway, air pollution, and children’s lung function growth. Am J Respir Crit Care Med 2011, 15:243-248.
  • [50]Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P: Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am J Epidemiol 2011, 15:603-620.
  • [51]Wenten M, Gauderman WJ, Berhane K, Lin PC, Peters J, Gilliland FD: Functional variants in the catalase and myeloperoxidase genes, ambient air pollution, and respiratory related school absences: an example of epistasis in gene-environment interactions. Am J Epidemiol 2009, 170:1494-1501.
  • [52]Gilliland FD: Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. Pediatrics 2009, 123(Suppl 3):S168-S173.
  • [53]Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M, Moreno-Macías H, Reyes-Ruiz NI, Estela Del Río-Navarro B, Hernández-Avila M, London SJ: Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax 2004, 59:8-10.
  • [54]Kishi R, Kobayashi S, Ikeno T, Araki A, Miyashita C, Itoh S, Sasaki S, Okada E, Kobayashi S, Kashino I, Itoh K, Nakajima S, The members of the Hokkaido Study on Environment and Children’s Health: Ten years of progress in the Hokkaido birth cohort study on environment and children’s health: cohort profile – updated 2013. Environ Health Prev Med 2013, 18:429-450. Epub Aug 20
  • [55]Barnes PJ: Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009, 6:693-696.
  • [56]Shaheen SO, Adcock IM: The developmental origins of asthma: does epigenetics hold the key? Am J Respir Crit Care Med 2009, 180:690-691.
  • [57]Prescott SL, Clifton V: Asthma and pregnancy: emerging evidence of epigenetic interactions in utero. Curr Opin Allergy Clin Immunol 2009, 9:417-426.
  • [58]Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, Ho SM: Relation of DNA methylation of 59-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 2009, 4:e4488.
  • [59]Fu A, Leaderer BP, Gent JF, Leaderer D, Zhu Y: An environmental epigenetic study of ADRB2 5’-UTR methylation and childhood asthma severity. Clin Exp Allergy 2012, 42:1575-1581.
  • [60]Rossnerova A, Tulupova E, Tabashidze N, Schmuczerova J, Dostal M, Rossner P, Gmuender H, Sram RJ: Factors affecting the 27 K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res 2013, 741–742:18-26.
  • [61]Salam MT, Byun HM, Lurmann F, Breton CV, Wang X, Eckel SP, Gilliand FD: Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol 2012, 129:232-239.
  • [62]Gilmour PS, Rahman I, Donaldson K, MacNee W: Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol 2003, 284:L533-L540.
  • [63]Cao D, Bromberg PA, Samet JM: COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am J Respir Cell Mol Biol 2007, 37:232-239.
  • [64]Jardim MJ, Fry RC, Jaspers I, Dailey L, Diaz-Sanchez D: Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ Health Perspect 2009, 117:1745-1751.
  • [65]Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M, Pegoraro V, Motta V, Tarantini L, Cantone L, Schwartz J, Bertazzi PA, Baccarelli A: Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 2010, 118:763-768.
  • [66]Tsuji M, Kawamoto T, Koriyama C, Matsumura F: IL-22 mRNA expression in blood samples as a useful biomarker for assessing the adverse health effects of PCBs on allergic children. Int J Environ Res Public Health 2012, 9:4321-4232.
  • [67]Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, Houseman EA, Izzi B, Kelsey KT, Meissner A, Milosavljevic A, Siegmund KD, Bock C, Irizarry RA: Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 2013, 10:949-955.
  • [68]Spannhake EW, Reddy SPM, Jacoby DB, Yu X-Y, Saatian B, Tian J: Synergism between rhinovirus infection and oxidant pollutant exposure enhances airways epithelial cell cytokine production. Environ Health Perspect 2002, 110:665-670.
  • [69]Lambert AL, Trasti FS, Mangum JB, Everitt JI: Effect of preexposure to ultrafine carbon black on respiratory syncytial virus infection in mice. Toxicol Sci 2003, 72:331-338.
  • [70]Kaan PM, Hegele RG: Interaction between respiratory sincytial virus and particulate matter in guinea pig alveolar macrophages. Am J Respir Cell Mol Biol 2003, 28:697-704.
  • [71]Sigaud S, Goldsmith CA, Zhou H, Yang Z, Fedulov A, Imrich A, Kobzik L: Air pollution particles diminish bacterial clearance in the primed lungs of mice. Toxicol Appl Pharmacol 2007, 223:1-9.
  • [72]Grigg J: Air pollution and children’s respiratory health – gaps in the global evidence. Clin Exp Allergy 2011, 41:1072-1075.
  文献评价指标  
  下载次数:12次 浏览次数:18次