期刊论文详细信息
BMC Microbiology
Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture
Luis M Cintas1  Carmen Herranz1  Pablo E Hernández1  Rosa del Campo3  Cristina Campanero1  Carlos Araújo2  Beatriz Gómez-Sala1  Estefanía Muñoz-Atienza1 
[1] Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP) Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, 28040, Spain;Centro de Genética e Biotecnologia, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal;Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
关键词: Qualified Presumption of Safety;    Antibiotic resistance and virulence factors;    Anti-fish pathogens activity;    Aquaculture probiotics;    Aquatic animals;    Lactic Acid Bacteria;   
Others  :  1144549
DOI  :  10.1186/1471-2180-13-15
 received in 2012-07-23, accepted in 2012-12-18,  发布年份 2013
PDF
【 摘 要 】

Background

The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food.

Results

These LAB displayed a broad antimicrobial/bacteriocin activity against the main Gram-positive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured lnu(A) conferring resistance to lincosamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities.

Conclusions

To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and lnu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB intended for use as probiotics in aquaculture.

【 授权许可】

   
2013 Muñoz-Atienza et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330175604586.pdf 331KB PDF download
【 参考文献 】
  • [1]FAO: FAO Fisheries Department. State of world aquaculture 2006. FAO Fish Tech Pap 2006, 500:1-134.
  • [2]FAO: Responsible use of antibiotics in aquaculture. FAO Fish Tech Pap 2005, 469:1-97.
  • [3]Cabello FC: Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 2006, 8:1137-1144.
  • [4]Austin B: The bacterial microflora of fish, revised. ScientificWorldJournal 2006, 6:931-945.
  • [5]Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B: Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 2000, 185:235-243.
  • [6]Wang Y-B, Li J-R, Lin J: Probiotics in aquaculture: challenges and outlook. Aquaculture 2008, 281:1-4.
  • [7]Defoirdt T, Sorgeloos P, Bossier P: Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 2011, 14:251-258.
  • [8]Verschuere L, Rombaut G, Sorgeloos P, Verstraete W: Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 2000, 64:655-671.
  • [9]Gatesoupe FJ: Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 2008, 14:107-114.
  • [10]FAO/WHO: Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food Nutr Pap 2006, 85:1-50.
  • [11]EC: On a generic approach to the safety assessment of microorganisms used in feed/food and feed/food production - A working paper open for comment. 2003. http://ec.europa.eu/food/fs/sc/scf/out178_en.pdf webcite
  • [12]EFSA: Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. The EFSA Journal 2007, 587:1-16.
  • [13]EFSA: Maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). The EFSA Journal 2011, 9:1-82.
  • [14]Gómez-Sala B, Basanta A, Sánchez J, Martín M, Criado R, Gutiérrez J, Citti R, Herranz C, Hernández PE, Cintas LM: Antimicrobial activity of lactic acid bacteria isolated from aquatic animals and fish products. In 13éme Colloque du Club des Bactéries Lactiques, p 45 Abstracts. Nantes, France: ENITIAA and French National Institute for Agricultural Research (INRA); 2004.
  • [15]EFSA: Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal 2012, 10:2740-2749.
  • [16]Collins MD, Samelis J, Metaxopoulos J, Wallbanks S: Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 1993, 75:595-603.
  • [17]Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Müller-Bertling S, Witte W, Goossens H: Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 2007, 59:900-912.
  • [18]Ringø E, Gatesoupe FJ: Lactic acid bacteria in fish: a review. Aquaculture 1998, 160:177-203.
  • [19]Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y: Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 2010, 8:1153-1177.
  • [20]O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C: Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int J Food Microbiol 2012, 152:189-205.
  • [21]Gillor O, Etzion A, Riley MA: The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 2008, 81:591-606.
  • [22]Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG: Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2007, 104:7617-7621.
  • [23]Vendrell D, Balcazar JL, Ruiz-Zarzuela I, de Blas I, Girones O, Muzquiz JL: Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 2006, 29:177-198.
  • [24]Decamp O, Moriarty D: Aquaculture species profit from probiotics. Feed Mix 2007, 15:20-23.
  • [25]Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ: Microbial manipulations to improve fish health and production - A Mediterranean perspective. Fish Shellfish Immunol 2011, 30:1-16.
  • [26]Nikoskelainen S, Salminen S, Bylund G, Ouwehand AC: Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 2001, 67:2430-2435.
  • [27]Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL, Girones O: Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 2008, 278:188-191.
  • [28]Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E: The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302:1-18.
  • [29]Das S, Ward LR, Burke C: Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture 2010, 305:32-41.
  • [30]Wang Y-B, Tian Z-Q, Yao J-T, Li W: Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 2008, 277:203-207.
  • [31]Olmos J, Ochoa L, Paniagua-Michel J, Contreras R: Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains. Mar Drugs 2011, 9:1119-1132.
  • [32]Eaton TJ, Gasson MJ: Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 2001, 67:1628-1635.
  • [33]Gomes BC, Esteves CT, Palazzo IC, Darini AL, Felis GE, Sechi LA, Franco BD, De Martinis EC: Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol 2008, 25:668-675.
  • [34]López M, Sáenz Y, Rojo-Bezares B, Martínez S, del Campo R, Ruiz-Larrea F, Zarazaga M, Torres C: Detection of vanA and vanB2-containing enterococci from food samples in Spain, including Enterococcus faecium strains of CC17 and the new singleton ST425. Int J Food Microbiol 2009, 133:172-178.
  • [35]Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H: Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 2004, 42:4473-4479.
  • [36]Klare I, Konstabel C, Mueller-Bertling S, Werner G, Strommenger B, Kettlitz C, Borgmann S, Schulte B, Jonas D, Serr A, et al.: Spread of ampicillin/vancomycin-resistant Enterococcus faecium of the epidemic-virulent clonal complex-17 carrying the genes esp and hyl in German hospitals. Eur J Clin Microbiol Infect Dis 2005, 24:815-825.
  • [37]Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, et al.: Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 2008, 13:1-11.
  • [38]Ogier JC, Serror P: Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 2008, 126:291-301.
  • [39]Danielsen M, Wind A: Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 2003, 82:1-11.
  • [40]Vay C, Cittadini R, Barberis C, Hernán Rodríguez C, Perez Martínez H, Genero F, Famiglietti A: Antimicrobial susceptibility of non-enterococcal intrinsic glycopeptide-resistant Gram-positive organisms. Diagn Microbiol Infect Dis 2007, 57:183-188.
  • [41]Ammor MS, Flórez AB, Mayo B: Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 2007, 24:559-570.
  • [42]Danielsen M, Simpson PJ, O'Connor EB, Ross RP, Stanton C: Susceptibility of Pediococcus spp. to antimicrobial agents. J Appl Microbiol 2007, 102:384-389.
  • [43]Klare I, Konstabel C, Badstübner D, Werner G, Witte W: Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 2003, 88:269-290.
  • [44]Albarracín Orio AG, Piñas GE, Cortes PR, Cian MB, Echenique J: Compensatory evolution of pbp mutations restores the fitness cost imposed by beta-lactam resistance in Streptococcus pneumoniae. PLoS Pathog 2011, 7:e1002000.
  • [45]Piuri M, Sanchez-Rivas C, Ruzal SM: Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 2005, 98:84-95.
  • [46]Klein G, Hallmann C, Casas IA, Abad J, Louwers J, Reuter G: Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol 2000, 89:815-824.
  • [47]Ayeni FA, Sánchez B, Adeniyi BA, de Los Reyes-Gavilán CG, Margolles A, Ruas-Madiedo P: Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. Int J Food Microbiol 2011, 147:97-104.
  • [48]Ayeni FA, Adeniyi BA, Ogunbanwo ST, Tabasco R, Paarup T, Peláez C, Requena T: Inhibition of uropathogens by lactic acid bacteria isolated from dairy foods and cow's intestine in western Nigeria. Arch Microbiol 2009, 191:639-648.
  • [49]Del Grosso M, Iannelli F, Messina C, Santagati M, Petrosillo N, Stefani S, Pozzi G, Pantosti A: Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J Clin Microbiol 2002, 40:774-778.
  • [50]Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R: A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 1999, 43:925-929.
  • [51]Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H: Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 1999, 43:2823-2830.
  • [52]Leclercq R: Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 2002, 34:482-492.
  • [53]Achard A, Villers C, Pichereau V, Leclercq R: New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob Agents Chemother 2005, 49:2716-2719.
  • [54]Marteau P, Gerhardt MF, Myara A, Bouvier E, Trivin F, Rambaud JC: Metabolism of bile salts by alimentary bacteria during transit in the human small intestine. Microb Ecol Health D 1995, 8:151-157.
  • [55]Ruseler-van Embden JG, van Lieshout LM, Gosselink MJ, Marteau P: Inability of Lactobacillus casei strain GG, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand J Gastroenterol 1995, 30:675-680.
  • [56]Heavey PM, Rowland IR: Microbial-gut interactions in health and disease, Gastrointestinal cancer. Best Pract Res Clin Gastroenterol 2004, 18:323-336.
  • [57]Begley M, Gahan CG, Hill C: The interaction between bacteria and bile. FEMS Microbiol Rev 2005, 29:625-651.
  • [58]Zhou JS, Gopal PK, Gill HS: Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol 2001, 63:81-90.
  • [59]Delgado S, O'Sullivan E, Fitzgerald G, Mayo B: Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J Food Sci 2007, 72:M310-M315.
  • [60]Muñoz-Atienza E, Landeta G, De Las Rivas B, Gómez-Sala B, Muñoz R, Hernández PE, Cintas LM, Herranz C: Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int J Food Microbiol 2011, 146:212-216.
  • [61]Ladero V, Fernández M, Calles-Enríquez M, Sánchez-Llana E, Canedo E, Martín MC, Alvarez MA: Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 2012, 30:132-138.
  • [62]Ringø E, Strom E, Tabachek JA: Intestinal microflora of salmonids: a review. Aquac Res 1995, 26:773-789.
  • [63]Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK: Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 2002, 10:109-121.
  • [64]Ramirez RF, Dixon BA: Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture 2003, 227:417-426.
  • [65]Fjellheim AJ, Klinkenberg G, Skjermo J, Aasen IM, Vadstein O: Selection of candidate probionts by two different screening strategies from Atlantic cod (Gadus morhua L.) larvae. Vet Microbiol 2010, 144:153-159.
  • [66]Kullen MJ, Sanozky-Dawes RB, Crowell DC, Klaenhammer TR: Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol 2000, 89:511-516.
  • [67]Poyart C, Quesnes G, Trieu-Cuot P: Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol 2000, 38:415-418.
  • [68]Cintas LM, Rodríguez JM, Fernández MF, Sletten K, Nes IF, Hernández PE, Holo H: Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 1995, 61:2643-2648.
  • [69]Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB: Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 1994, 176:7335-7344.
  • [70]Hickey RM, Twomey DP, Ross RP, Hill C: Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 2003, 149:655-664.
  • [71]CLSI: Performance Standards for Antimicrobial Susceptibility Testing: Twenty–first Informational Supplement M100–S21. Wayne, PA, USA: CLSI; 2011.
  • [72]Klare I, Konstabel C, Müller-Bertling S, Reissbrodt R, Huys G, Vancanneyt M, Swings J, Goossens H, Witte W: Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Appl Environ Microbiol 2005, 71:8982-8986.
  • [73]Noriega L, Cuevas I, Margolles A, Reyes-Gavilán CG Dl: Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int Dairy J 2006, 16:850-855.
  • [74]Donabedian SM, Thal LA, Hershberger E, Perri MB, Chow JW, Bartlett P, Jones R, Joyce K, Rossiter S, Gay K, et al.: Molecular characterization of gentamicin-resistant Enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol 2003, 41:1109-1113.
  • [75]Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L: Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 1996, 40:2562-2566.
  • [76]Sutcliffe J, Tait-Kamradt A, Wondrack L: Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 1996, 40:1817-1824.
  • [77]Strommenger B, Kettlitz C, Werner G, Witte W: Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 2003, 41:4089-4094.
  • [78]Werner G, AWillems RJ, Hildebrandt B, Klare I, Witte W: Influence of transferable genetic determinants on the outcome of typing methods commonly used for Enterococcus faecium. J Clin Microbiol 2003, 41:1499-1506.
  • [79]Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J: Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother 1999, 43:1062-1066.
  文献评价指标  
  下载次数:12次 浏览次数:13次