BMC Evolutionary Biology | |
Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae | |
Rose Ann Cattolico1  Tejinder Randhawa1  Heather M Hunsperger1  | |
[1] Department of Biology, University of Washington, Seattle, WA, USA | |
关键词: Protochlorophyllide; Algae; Gene duplication; Endosymbiotic gene transfer; Horizontal gene transfer; Chlorophyll synthesis; | |
Others : 1129198 DOI : 10.1186/s12862-015-0286-4 |
|
received in 2014-10-07, accepted in 2015-01-15, 发布年份 2015 |
【 摘 要 】
Background
Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.
Results
A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates.
In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected.
Conclusions
We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa.
【 授权许可】
2015 Hunsperger et al.; licensee BioMed Central.
Files | Size | Format | View |
---|---|---|---|
Figure 1. | 45KB | Image | download |
Figure 4. | 136KB | Image | download |
Figure 3. | 150KB | Image | download |
Figure 2. | 191KB | Image | download |
Figure 1. | 39KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 1.
【 参考文献 】
- [1]Willows RD: Chlorophyll synthesis. In The structure and function of plastids. Edited by Wise RR, Hoober JK. Springer, Dordrecht; 2006:295-313.
- [2]Armstrong G: Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B Biol 1998, 43:87-100.
- [3]Suzuki J, Bauer C: A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci U S A 1995, 92:3749-53.
- [4]Fujita Y, Bauer CE: The light-dependent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In The porphyrin handbook. vol. 13. Edited by Kadish K, Smith K, Guilard R. Elsevier Science, San Diego; 2003:109-56.
- [5]Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, et al.: X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 2010, 465:110-4.
- [6]Fujita Y, Bauer CE: Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits: in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 2000, 275:23583-8.
- [7]Nomata J, Kitashima M, Inoue K, Fujita Y: Nitrogenase Fe protein-like Fe-S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett 2006, 580:6151-4.
- [8]Yamazaki S, Nomata J, Fujita Y: Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 2006, 142:911-22.
- [9]Yamamoto H, Kurumiya S, Ohashi R, Fujita Y: Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 2009, 50:1663-73.
- [10]Blankenship RE: Molecular mechanisms of photosynthesis. Blackwell Science Ltd, Oxford; 2002.
- [11]Reinbothe S, Reinbothe C, Apel K, Lebedev N: Evolution of chlorophyll biosynthesis—the challenge to survive photooxidation. Cell 1996, 86:703-5.
- [12]Griffiths WT, McHugh T, Blankenship RE: The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Lett 1996, 398:235-8.
- [13]Margulis L: Origin of eukaryotic cells: evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian earth. Yale University Press, New Haven; 1970.
- [14]Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, et al.: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 2005, 15:1325-30.
- [15]Stiller JW, Hall BD: The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci U S A 1997, 94:4520-5.
- [16]Stiller JW, Riley J, Hall BD: Are red algae plants? A critical evaluation of three key molecular data sets. J Mol Evol 2001, 52:527-39.
- [17]Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ: The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 2007, 24:54-62.
- [18]Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, Demoulin V, et al.: Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 2010, 27:1698-709.
- [19]Yoon HS, Hackett JD, Pinto G, Bhattacharya D: The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 2002, 99:15507-12.
- [20]Bachvaroff TR, Sanchez Puerta MV, Delwiche CF: Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 2005, 22:1772-82.
- [21]Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, et al.: Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 2007, 24:1832-42.
- [22]Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF: Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol 2007, 44:885-97.
- [23]Bodył A: Do plastid-related characters support the chromalveolate hypothesis? J Phycol 2005, 41:712-9.
- [24]Sanchez-Puerta MV, Delwiche CF: A hypothesis for plastid evolution in chromalveolates. J Phycol 2008, 44:1097-107.
- [25]Bodył A, Stiller JW, Mackiewicz P: Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 2009, 24:119-21. author reply 121–2
- [26]Petersen J, Ludewig A-K, Michael V, Bunk B, Jarek M, Baurain D, et al.: Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014, 6:666-84.
- [27]Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al.: Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 2002, 99:12246-51.
- [28]Doolittle WF, Boucher Y, Nesbø CL, Douady CJ, Andersson JO, Roger AJ: How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci 2003, 358:39-58.
- [29]Doolittle WF: You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 1998, 14:307-11.
- [30]Gogarten JP: Gene transfer: gene swapping craze reaches eukaryotes. Curr Biol 2003, 13:R53-4.
- [31]Petersen J, Teich R, Brinkmann H, Cerff R: A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol 2006, 62:143-57.
- [32]Waller RF, Patron NJ, Keeling PJ: Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Microbiol 2006, 56:1439-47.
- [33]Rogers MB, Watkins RF, Harper JT, Durnford DG, Gray MW, Keeling PJ: A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 2007, 7:89.
- [34]Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C: Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms. Mol Biol Evol 2012, 29:367-79.
- [35]Qiu H, Price DC, Weber APM, Facchinelli F, Yoon HS, Bhattacharya D: Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci 2013, 18:680-7.
- [36]Archibald JM, Rogers MB, Toop M, Ishida K-I, Keeling PJ: Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 2003, 100:7678-83.
- [37]Jain R, Rivera MC, Lake JA: Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 1999, 96:3801-6.
- [38]Cohen O, Gophna U, Pupko T: The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol 2011, 28:1481-9.
- [39]Rivera MC, Jain R, Moore JE, Lake JA: Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci U S A 1998, 95:6239-44.
- [40]Park C, Zhang J: High expression hampers horizontal gene transfer. Genome Biol Evol 2012, 4:523-32.
- [41]Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol 2003, 18:292-8.
- [42]Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, et al.: An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 2009, 4:e7743.
- [43]Nymark M, Valle KC, Hancke K, Winge P, Andresen K, Johnsen G, et al.: Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One 2013, 8:e58722.
- [44]Joint Genome Institute: Genome Portal http://genomeportal.jgi.doe.gov/
- [45]Ong H, Wilhelm S, Gobler C, Bullerjahn G, Jacobs MA, McKay J, et al.: Analyses of the complete chloroplast genome sequences of two members of the Pelagophyceae: Aureococcus anophagefferens CCMP1984 amd Aureumbra lagunensis CCMP1507. J Phycol 2010, 46:602-15.
- [46]Fong A, Archibald JM: Evolutionary dynamics of light-independent protochlorophyllide oxidoreductase genes in the secondary plastids of cryptophyte algae. Eukaryot Cell 2008, 7:550-3.
- [47]Masuda T, Takamiya K-I: Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 2004, 81:1-29.
- [48]Kavanagh KL, Jörnvall H, Persson B, Oppermann U: The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008, 65:3895-906.
- [49]Wilks HM, Timko MP: A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci U S A 1995, 92:724-8.
- [50]Lebedev N, Karginova O, McIvor W, Timko MP: Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH:protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry 2001, 40:12562-74.
- [51]Heyes DJ, Hunter CN: Site-directed mutagenesis of Tyr-189 and Lys-193 in NADPH: protochlorophyllide oxidoreductase from Synechocystis. Biochem Soc Trans 2002, 30:601-4.
- [52]Menon BRK, Waltho JP, Scrutton NS, Heyes DJ: Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 2009, 284:18160-6.
- [53]Menon BRK, Davison PA, Hunter CN, Scrutton NS, Heyes DJ: Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 2010, 285:2113-9.
- [54]Sousa FL, Shavit-Grievink L, Allen JF, Martin WF: Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013, 5:200-16.
- [55]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18:691-9.
- [56]Marin B, Nowack ECM, Melkonian M: A plastid in the making: evidence for a second primary endosymbiosis. Protist 2005, 156:425-32.
- [57]Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, et al.: Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 2012, 335:843-7.
- [58]Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, et al.: Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 2014, 93:1066-78.
- [59]Shalchian-Tabrizi K, Skånseng M, Ronquist F, Klaveness D, Bachvaroff TR, Delwiche CF, et al.: Heterotachy processes in rhodophyte-derived secondhand plastid genes: implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol 2006, 23:1504-15.
- [60]Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersen RA, et al.: Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 2012, 163:217-31.
- [61]Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al.: The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 2014, 12:e1001889.
- [62]Chan CX, Soares MB, Bonaldo MF, Wisecaver JH, Hackett JD, Anderson DM, et al.: Analysis of Alexandrium tamarense (Dinophyceae) genes reveals the complex evolutionary history of a microbial eukaryote. J Phycol 2012, 48:1130-42.
- [63]Wisecaver JH, Brosnahan ML, Hackett JD: Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2013, 5:2368-81.
- [64]Imanian B, Keeling PJ: Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms. Genome Biol Evol 2014, 6:333-43.
- [65]Yang Y, Matsuzaki M, Takahashi F, Qu L, Nozaki H: Phylogenomic analysis of “red” genes from two divergent species of the “green” secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. PLoS One 2014, 9:e101158.
- [66]Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al.: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 2012, 492:59-65.
- [67]Kawachi M, Inouye I, Honda D, Kelly CJO, Bailey JC, Bidigare RR, et al.: The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega-3 fatty acids. Phycol Res 2002, 50:31-47.
- [68]García-Sandoval R: Why some clades have low bootstrap frequencies and high Bayesian posterior probabilities. Isr J Ecol Evol 2014, 60:41-4.
- [69]Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, et al.: Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 2008, 25:2653-67.
- [70]Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D: Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 2009, 324:1724-6.
- [71]Woehle C, Dagan T, Martin WF, Gould SB: Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol 2011, 3:1220-30.
- [72]Cuvelier ML, Allen AE, Monier A, McCrow JP, Messié M, Tringe SG, et al.: Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci U S A 2010, 107:14679-84.
- [73]Burki F, Flegontov P, Oborník M, Cihlár J, Pain A, Lukes J, et al.: Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol 2012, 4:626-35.
- [74]Deschamps P, Moreira D: Reevaluating the green contribution to diatom genomes. Genome Biol Evol 2012, 4:683-8.
- [75]Liu H, Aris-Brosou S, Probert I, de Vargas C: A time line of the environmental genetics of the haptophytes. Mol Biol Evol 2010, 27:161-76.
- [76]Gillott M, Gibbs S: The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol 1980, 16:558-68.
- [77]Lane CE, Archibald JM: The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol 2008, 23:268-75.
- [78]Green BR: After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 2011, 107:103-15.
- [79]Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J: The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 2014, 5:5764.
- [80]Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, et al.: Plastid genomes of two brown algae. Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 2009, 9:253.
- [81]Janouškovec J, Horák A, Oborník M, Lukes J, Keeling PJ: A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 2010, 107:10949-54.
- [82]Rice DW, Palmer JD: An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 2006, 4:31.
- [83]Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, et al.: The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics 2014, 15:604.
- [84]Medlin L, Kooistra W, Potter D, Saunders G, Andersen R: Phylogenetic relationships of the “golden algae” (haptophytes, heterokont chromophytes) and their plastids. Plant Syst Evol 1997, 11:187-219.
- [85]Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D: A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 2004, 21:809-18.
- [86]Berney C, Pawlowski J: A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc Biol Sci 2006, 273:1867-72.
- [87]Belyaeva OB, Litvin FF: Photoactive pigment—enzyme complexes of chlorophyll precursor in plant leaves. Biochem 2007, 72:1458-77.
- [88]Matsumoto T, Shinozaki F, Chikuni T, Yabuki A, Takishita K, Kawachi M, et al.: Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 2011, 162:268-76.
- [89]Wisecaver JH, Hackett JD: Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics 2010, 11:366.
- [90]Hackett JD, Anderson DM, Erdner DL, Bhattacharya D: Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 2004, 91:1523-34.
- [91]Patron NJ, Waller RF, Keeling PJ: A tertiary plastid uses genes from two endosymbionts. J Mol Biol 2006, 357:1373-82.
- [92]Yoon HS, Hackett JD, Bhattacharya D: A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci U S A 2002, 99:11724-9.
- [93]Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, et al.: Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO 1. J Phycol 2007, 43:1302-9.
- [94]Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C: The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 2009, 26:631-48.
- [95]Ota S, Vaulot D: Lotharella reticulosa sp. nov.: a highly reticulated network forming chlorarachniophyte from the Mediterranean Sea. Protist 2012, 163:91-104.
- [96]Murchie EH, Horton P: Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 1997, 20:438-48.
- [97]Geider R, MacIntyre H, Kana T: Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser 1997, 148:187-200.
- [98]Schoefs B, Franck F: Protochlorophyllide reduction: mechanisms and evolution. Photochem Photobiol 2003, 78:543-57.
- [99]Fujita Y, Takagi H, Hase T: Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 1998, 39:177-85.
- [100]Nomata J, Ogawa T, Kitashima M, Inoue K, Fujita Y: NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. FEBS Lett 2008, 582:1346-50.
- [101]Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert W-D, Moser J: Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 2010, 285:27336-45.
- [102]Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, et al.: Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 2006, 442:1025-8.
- [103]Bowler C, Vardi A, Allen AE: Oceanographic and biogeochemical insights from diatom genomes. Ann Rev Mar Sci 2010, 2:333-65.
- [104]Greene RM, Geider RJ, Kolber Z, Falkowski PG: Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 1992, 100:565-75.
- [105]La Roche J, Geider RJ, Graziano LM, Murray H, Lewis K: Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J Phycol 1993, 29:767-77.
- [106]La Roche J, Murray H, Orellana M, Newton J: Flavodoxin expression as an indicator of iron limitation in marine diatoms. J Phycol 1995, 31:520-30.
- [107]Heyes DJ, Hunter CN: Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 2005, 30:642-9.
- [108]Koski VM, Smith JHC: The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 1948, 70:3558-62.
- [109]Hanf R, Fey S, Schmitt M, Hermann G, Dietzek B, Popp J: Catalytic efficiency of a photoenzyme—an adaptation to natural light conditions. ChemPhysChem 2012, 13:2013-5.
- [110]Björn LO: Comment on “Catalytic efficiency of a photoenzyme–an adaptation to natural light conditions” by J Popp et al. Chemphyschem 2013, 14:2595-7. author reply 2598–2600
- [111]Han M, Kim Y, Cattolico RA: Heterosigma akashiwo (Raphidophyceae) resting cell formation in batch culture: strain identity versus physiological response. J Phycol 2002, 317:304-17.
- [112]Tobin ED, Grünbaum D, Patterson J, Cattolico RA: Behavioral and physiological changes during benthic-pelagic transition in the harmful alga, Heterosigma akashiwo: potential for rapid bloom formation. PLoS One 2013, 8:e76663.
- [113]Ralser M, Querfurth R, Warnatz H-J, Lehrach H, Yaspo M-L, Krobitsch S: An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 2006, 347:747-51.
- [114]Burge C, Karlin S: Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997, 268:78-94.
- [115]Yeh R-F, Lim LP, Burge CB: Computational inference of homologous gene structures in the human genome. Genome Res 2001, 11:803-16.
- [116]GenomeScan Web Server at MIT http://genes.mit.edu/genomescan.html
- [117]Birve S, Selstam E, Johansson B: Secondary structure of NADPH: protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods. Biochem J 1996, 317:549-55.
- [118]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-7.
- [119]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-5.
- [120]CIPRES Science Gateway http://www.phylo.org
- [121]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-90.
- [122]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-4.
- [123]Tracer http://tree.bio.ed.ac.uk/software/tracer/
- [124]FigTree http://tree.bio.ed.ac.uk/software/figtree/
- [125]Hunsperger HM, Randhawa T, Cattolico RA. Data from: extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015.