期刊论文详细信息
BMC Pregnancy and Childbirth
Effects of a ketogenic diet during pregnancy on embryonic growth in the mouse
Mark Henkelman1  Susan Lee Adamson2  Michael D Wong1  Matthijs van Eede1  Dafna Sussman1 
[1]Mouse Imaging Centre (MICe), The Hospital for Sick Children, Toronto, Canada
[2]Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
关键词: Magnetic resonance imaging;    Optical projection tomography;    Mouse imaging;    CD-1 mouse;    Embryonic development;    Low-carbohydrate diet;    Ketogenic diet;   
Others  :  1138041
DOI  :  10.1186/1471-2393-13-109
 received in 2012-11-08, accepted in 2013-04-24,  发布年份 2013
PDF
【 摘 要 】

Background

The increasing use of the ketogenic diet (KD), particularly by women of child-bearing age, raises a question about its suitability during gestation. To date, no studies have thoroughly investigated the direct implications of a gestational ketogenic diet on embryonic development.

Methods

To fill this knowledge gap we imaged CD-1 mouse embryos whose mothers were fed either a Standard Diet (SD) or a KD 30 days prior to, as well as during gestation. Images were collected at embryonic days (E) 13.5 using Optical Projection Tomography (OPT) and at E17.5 using Magnetic Resonance Imaging (MRI).

Results

An anatomical comparison of the SD and KD embryos revealed that at E13.5 the average KD embryo was volumetrically larger, possessed a relatively larger heart but smaller brain, and had a smaller pharynx, cervical spinal cord, hypothalamus, midbrain, and pons, compared with the average SD embryo. At E17.5 the KD embryo was found to be volumetrically smaller with a relatively smaller heart and thymus, but with enlarged cervical spine, thalamus, midbrain and pons.

Conclusion

A ketogenic diet during gestation results in alterations in embryonic organ growth. Such alterations may be associated with organ dysfunction and potentially behavioral changes in postnatal life.

【 授权许可】

   
2013 Sussman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150318154542816.pdf 1722KB PDF download
Figure 9. 117KB Image download
Figure 8. 63KB Image download
Figure 7. 46KB Image download
Figure 6. 86KB Image download
Figure 5. 43KB Image download
Figure 4. 47KB Image download
Figure 3. 92KB Image download
Figure 2. 46KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Foster GD, Wyatt HR, Hill JO, Markis AP, Rosenbaum DL, Brill C, Stein RI, Mohammed BS, Miller B, Rader DJ, Zamel B, Wadden TA, Tenhave T, Newcomb CW, Klein S: Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med 2010, 153(3):147-157.
  • [2]McDonald L: The Ketogenic Diet: A Complete Guide for the Dieter and Practitioner. Lyle: McDonald; 1998.
  • [3]Barker DJP: Fetal origins of coronary heart disease. BMJ 1995, 311(6998):171-174.
  • [4]Jansson T, Powell TL: Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci 2007, 113(1):1-13.
  • [5]King JC: Physiology of pregnancy and nutrient metabolism. Am J Clin Nutr 2000, 71(5):1218S-1225S.
  • [6]Lucas ES, Finn SL, Cox A, Lock FR, Watkins AJ: The impact of maternal high fat nutrition on the next generation: food for thought? J Physiol 2009, 587(Pt 14):3425-3426.
  • [7]Barker DJP: Fetal and infant origins of adult disease. Monatsschrift Kinderheilkunde 2001, 149(0):S2-S6.
  • [8]Gluckman PD, Hanson MA, Spencer HG: Predictive adaptive responses and human evolution. Trends Ecol Evol (Amst) 2005, 20(10):527-533.
  • [9]Godfrey KM, Barker DJ: Fetal nutrition and adult disease. Am J Clin Nutr 2000, 71(5):1344S-1352S.
  • [10]Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE: Maternal nutrition and fetal development. J Nutr 2004, 134(9):2169-2172.
  • [11]Latham MC, Cobos F: The effects of malnutrition on intellectual development and learning. Am J Public Health 1971, 61(7):1307-1324.
  • [12]Walls JR, Sled JG, Sharpe J, Henkelman RM: Correction of artefacts in optical projection tomography. Phys Med Biol 2005, 50(19):4645-4665.
  • [13]Theiler K: The House Mouse: Atlas of Embryonic Development. New York: Springer-Verlag; 1989.
  • [14]Harlan Laboratories, Inc.: Teklad Lab Animal Diets. Available at: [http://www.harlan.com/online_literature/teklad_lab_animal_diets webcite] Accessed September 18, 2011
  • [15]Abbott Laboratories, Limited: Precision Xtra System Product Specifications. Available at: [http://www.abbottdiabetescare.ca webcite] 2010. Accessed September 18, 2011.
  • [16]Girden ER (1991) ANOVA: Repeated Measures. Sage University Papers Series on Quantitative Applications in the Social Sciences, 88. Thousand Oaks,: CA: Sage;
  • [17]Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J, Baldock R, Davidson D: Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 2002, 296(5567):541-545.
  • [18]Lerch JP, Sled JG, Henkelman RM: MRI phenotyping of genetically altered mice. Methods Mol Biol 2011, 711:349-361.
  • [19]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Ser B (Methodological) 1995, 57(1):289-300.
  • [20]Benjamini Y: Discovering the false discovery rate. J Royal Stat Soc: Series B (Stat Methodol) 2010, 72(4):405-416.
  • [21]The Jackson Laboratory: Mouse phenome database at the Jackson Laboratory. Physiological data summary using 11 inbred strains. Mouse Phenome Database. 2007. Available at: [http://phenome.jax.org/ webcite] Accessed August 1, 2012
  • [22]Kennedy AR, Pissios P, Otu H, Xue B, Asakura K, Furukawa N, Marino FE, Liu FF, Kahn BB, Libermann TA, Maratos-Flier E: A high-fat, Ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 2007, 292(6):E1724-E1739.
  • [23]Kwiterovich POJr, Vining EPG, Pyzik P, Skolasky RJr, Freeman JM: Effect of a high-fat Ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 2003, 290(7):912-920.
  • [24]Kossoff EH, Pyzik PL, McGrogan JR, Vining EPG, Freeman JM: Efficacy of the Ketogenic diet for infantile spasms. Pediatr 2002, 109(5):780-783.
  • [25]Liu Y-MC, Williams S, Basualdo-Hammond C, Stephens D, Curtis R: A prospective study: growth and nutritional status of children treated with the ketogenic diet. J Am Diet Assoc 2003, 103(6):707-712.
  • [26]Cahill GFJr.: Ketosis. Kidney Int 1981, 20(3):416-425.
  • [27]Shambaugh GE 3rd, Angulo MC, Koehler RR: Fetal fuels. VII. Ketone bodies inhibit synthesis of purines in fetal rat brain. Am J Physiol 1984, 247(1 Pt 1):E111-E117.
  • [28]Shambaugh GE3rd: Ketone body metabolism in the mother and fetus. Fed Proc 1985, 44(7):2347-2351.
  • [29]Nagai A, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T: Cellular expression of the monocarboxylate transporter (MCT) family in the placenta of mice. Placenta 2010, 31(2):126-133.
  • [30]Rudolf MC, Sherwin RS: Maternal ketosis and its effects on the fetus. Clin Endocrinol Metab 1983, 12(2):413-428.
  • [31]VanItallie TB, Nufert TH: Ketones: metabolism’s ugly duckling. Nutr Rev 2003, 61(10):327-341.
  • [32]Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GFJr: Ketone bodies, potential therapeutic uses. IUBMB Life 2001, 51(4):241-247.
  • [33]Veech RL: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004, 70(3):309-319.
  • [34]Kodde IF, van der Stok J, Smolenski RT, de Jong JW: Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol, Part A Mol Integr Physiol 2007, 146(1):26-39.
  • [35]Bartelds B, van der Leij FR, Kuipers JR: Role of ketone bodies in perinatal myocardial energy metabolism. Biochem Soc Trans 2001, 29(Pt 2):325-330.
  • [36]Steele NC, Rosebrough RW, McMurtry JP: Fetal hepatic and neural substrate utilization as affected by induced nutritional ketosis in swine. J Anim Sci 1984, 58(6):1388-1395.
  • [37]Rosebrough RW, Steele NC, Frobish LT: Effect of ketogenic diets in gestation on some characteristics of carbohydrate metabolism in fetal pig brain and liver. Growth 1981, 45(1):42-57.
  • [38]Williamson DH: Utilization of ketone bodies by mammalian tissues. Biochem Soc Trans 1981, 9(4):346-347.
  • [39]Morris AAM: Cerebral ketone body metabolism. J Inherit Metab Dis 2005, 28(2):109-121.
  • [40]Lust WD, Pundik S, Zechel J, Zhou V, Buczek M, Selman WR: Changing metabolic and energy profiles in fetal, neonatal, and adult rat brain. Metab Brain Dis 2003, 18(3):195-206.
  • [41]Halestrap AP: The monocarboxylate transporter family - Structure and functional characterization. IUBMB Life 2012, 64(1):1-9.
  • [42]Halestrap AP, Wilson MC: The monocarboxylate transporter family - role and regulation. IUBMB Life 2012, 64(2):109-119.
  • [43]Cotter DG, d’Avignon DA, Wentz AE, Weber ML, Crawford PA: Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J Biol Chem 2011, 286(9):6902-6910.
  • [44]Gjedde A, Crone C: Induction processes in blood-brain transfer of ketone bodies during starvation. Am J Physiol 1975, 229(5):1165-1169.
  • [45]Moore TJ, Lione AP, Sugden MC, Regen DM: Beta-hydroxybutyrate transport in rat brain: developmental and dietary modulations. Am J Physiol 1976, 230(3):619-630.
  • [46]Soares AKF, Guerra RGS, de Castro ML, Amancio-dos-Santos A, Guedes RCA, Cabral-Filho JE, Costa JA, Medeiros MC: Somatic and reflex development in suckling rats: effects of mother treatment with ketogenic diet associated with lack of protein. Nutr Neurosci 2009, 12(6):260-266.
  • [47]Carlson SE, Clandinin MT, Cook HW, Emken EA, Filer LJJr: Trans fatty acids: infant and fetal development. Am J Clin Nutr 1997, 66(3):715S-736S.
  文献评价指标  
  下载次数:0次 浏览次数:3次