期刊论文详细信息
BMC Infectious Diseases
Identification and real-time expression analysis of selected Toxoplasma gondii in-vivo induced antigens recognized by IgG and IgM in sera of acute toxoplasmosis patients
Rahmah Noordin2  Muhammad Hafiznur Yunus2  Sabariah Osman2  Izzati Zahidah Abdul Karim2  Majid Golkar1  Ai Ying Teh2  Boon Yin Khoo2  Atefeh Amerizadeh2 
[1] Parasitology Department, Molecular Parasitology Laboratory, Pasteur Institute of Iran, Tehran, Iran;Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Penang 11800, Malaysia
关键词: Real-time polymerase chain reaction (PCR);    mRNA expression analysis;    Acute toxoplasmosis sera;    cDNA library immunoscreening;    In-vivo induced antigen technology (IVIAT);    Toxoplasma gondii;   
Others  :  1147517
DOI  :  10.1186/1471-2334-13-287
 received in 2013-03-20, accepted in 2013-06-13,  发布年份 2013
PDF
【 摘 要 】

Background

Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection.

Methods

The pooled sera was first pre-absorbed against three different preparations of antigens from in-vitro-grown cells of each T. gondii and E. coli XL1-Blue MRF’, subsequently it was used to screen T. gondii cDNA phage expression library. Positive clones from each group were subjected to quantitative real-time PCR expression analysis on mRNA of in-vivo and in-vitro grown parasites.

Results

A total of 29 reactive clones from each IgM and IgG immunoscreenings were found to have high homology to T. gondii genes. Quantitative real-time PCR expression analysis showed that 20 IgM-detected genes and 11 IgG-detected genes were up-regulated in-vivo relative to their expression levels in-vitro. These included genes encoding micronemes, sterol-regulatory element binding protein site, SRS34A, MIC2-associated protein M2AP, nucleoredoxin, protein phosphatase 2C and several hypothetical proteins. A hypothetical protein (GenBank accession no. 7899266) detected by IgG had the highest in-vivo over in-vitro fold change of 499.86; while another up-regulated hypothetical protein (GenBank accession no. 7898829) recognized by IgM showed high sensitivity (90%) and moderate specificity (70%) in detecting T. gondii antibodies when tested with 20 individual serum samples.

Conclusion

The highly up-regulated genes and the corresponding proteins, in particular the hypothetical proteins, may be useful in further studies on understanding the disease pathogenesis and as potential vaccine candidates.

【 授权许可】

   
2013 Amerizadeh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404013312132.pdf 428KB PDF download
Figure 3. 25KB Image download
Figure 2. 44KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kopečná J, Jirků M, Oborník M, Tokarev YS, Lukeš J, Modrỳ D: Phylogenetic analysis of coccidian parasites from invertebrates: search for missing links. Protist 2006, 157:173-183.
  • [2]Torda A, Torda A: Toxoplasmosis. Are cats really the source? Aust Fam Physician 2001, 30:743-747.
  • [3]Montoya J, Liesenfeld O: Toxoplasmosis. Lancet 2004, 363(9425):1965-1976.
  • [4]Kapperud G, Jenum PA, Stray-Pedersen B, Melby KK, Eskil A, Eng J: Risk factors for Toxoplasma gondii infection in pregnancy. Results of a prospective case–control study in Norway. Am J Epidemiol 1996, 144:405-412.
  • [5]Sukthana Y: Toxoplasmosis beyond animal and humans. Trends Parasitol 2006, 22(3):137-142.
  • [6]Gilbert RE, Peckham CS: Congenital toxoplasmosis in the United Kingdom: to screen or not to screen? J Med Screen 2002, 9:135-141.
  • [7]Andrade GM, Resende LM, Goulart EM, Siqueira AL, Vitor RW, Januario JN: Hearing loss in congenital toxoplasmosis detected by newborn screening. Braz J Otorhinolaryngol 2008, 74:21-28.
  • [8]McLeod R, Kieffer F, Sautter M, Hosten T, Pelloux H: Why prevent, diagnose and treat congenital toxoplasmosis? Mem Inst Oswaldo Cruz 2009, 104:320-344.
  • [9]Liesenfeld O, Montoya JG, Kinney S, Press C, Remington JS: Effect of testing for IgG avidity in the diagnosis of toxoplasma gondii infection in pregnant women: experience in a US reference laboratory. J Infec Disease 2001, 183:1248-1253.
  • [10]Handfield M, Brady LJ, Progulske-Fox A, Hillman JD: IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol 2000, 8:336-339.
  • [11]Angelichio MJ, Camilli A: In vivo expression technology. Infect Immun 2002, 70:6518-6523.
  • [12]Lowe AM, Beattie DT, Deresiewicz RL: Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol 1998, 27:967-976.
  • [13]Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Abdul Karim IZ, Saadatnia G, Teh AY, Noordin R: Identification of Toxoplasma gondii in-vivo induced antigens by cDNA library immunoscreening with chronic toxoplasmosis sera. Microb Pathog 2013, 54:60-66.
  • [14]Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Noordin R: Research note optimization of toxoplasma gondii cultivation in VERO cell line. Trop Biomed 2010, 27:125-130.
  • [15]Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, Handfield M: In vivo induced antigen technology (IVIAT). Cell Microbiol 2005, 7(1):1-9.
  • [16]Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Progulske-Fox A, Handfield M, Ryan ET, Calderwood SB: Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. P Natl Acad Sci USA 2003, 100:8508-8513.
  • [17]Khan A, Taylor S, Su C, Mackey AJ, Boyle J, Cole R, Glover D, Tang K, Paulsen IT, Berriman M, Boothroyd JC, Pfefferkon ER, Dubey JP, Ajioka JW, Roos DS, Wootton JC, Sibely LD: Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii. Nucleic Acids Res 2005, 33:2980-2992.
  • [18]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25:402-408.
  • [19]Vigil PD, Alteri CJ, Mobley HLT: Identification of in vivo-induced antigens including an RTX family exoprotein required for uropathogenic Escherichia coli virulence. Infect Immun 2011, 79:2335-2344.
  • [20]Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Chio BK: In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol 2011, 26:167-172.
  • [21]Cao SL, Progulske-Fox A, Hillman JD, Handfield M: In vivo induced antigenic determinants of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 2004, 237:97-103.
  • [22]Kumar M, Khan FG, Sharma S, Kumar R, Faujdar J, Sharma R, Chauhan DS, Singh R, Magotra SK, Khan IA: Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathogenesis 2011, 50:31-38.
  • [23]Vernati G, Edwards W, Rocke T, Little S, Andrews G: Antigenic profiling of Yersinia pestis infection in the Wyoming coyote (Canis latrans). J Wildlife Dis 2011, 47:21-29.
  • [24]Deb D, Dahiya P, Srivastava K, Srivastava R, Srivastava B: Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis 2002, 82:175-182.
  • [25]Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Progulske-Fox JD, Handfield M, Rhee JH: Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 2003, 71:5461-5471.
  • [26]Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, Peppercorn AF, Handfield M, Hillman JD, Qadri F, Calderwood SB, Hohmann E, Breiman RF, Brooks WA, Ryan ET: Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun 2006, 74:5161-5168.
  • [27]John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, Sarracino D, Progulske-Fox A, Hillman JD, Handfield M, Tarr PI, Calderwood SB: Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect Immun 2005, 73:2665-2679.
  • [28]Zou YX, Mo ZL, Hao B, Ye XH, Guo DS, Zhang PJ: Screening of genes expressed in vivo after infection by Vibrio anguillarum M3. Lett App Microbiol 2010, 51:564-569.
  • [29]Salim KY, Cvitkovitch DG, Chang P, Bast DJ, Handfield M, Hillman JD, de Azavedo JC: Identification of group a streptococcus antigenic determinants unregulated in vivo. Infect Immun 2005, 73(9):6026-6038.
  • [30]Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, Winters MS, Alderete JF, de Almeida Soares CM: Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. Infect Immun 2010, 78(9):4040-4050.
  • [31]Araujo PRB, Ferreira AW: High diagnostic efficiency of IgM-ELISA with the use of multiple antigen peptides (MAP1) from T. gondii ESA (SAG-1, GRA-1 and GRA-7) in acute toxoplasmosis. Rev Inst Med Trop Sao Paulo 2010, 52(2):63-68.
  • [32]Carruthers VB, Tomley FM: Microneme proteins in apicomplexans. Subcell Biochem 2008, 47:33-45.
  • [33]El Haji H, Papoin J, Cérède O, Garcia-Réguet N, Soête M, Dubremetz JF, Lebrun M: Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryot Cell 2008, 7:1019-1028.
  • [34]Ren D, Zhou DH, Xu MJ, Zhou Y, Yang JF, Lin ZP, Lin RQ, Wu SM, Lin SQ, Zou FC, Yuan ZG: Sequence variation in Toxoplasma gondii MIC13 gene among isolates from different hosts and geographical locations. African Journal of Microbiology Research 2012, 6(13):1333-1337.
  • [35]Khan A, Su C, German M, Storch GA, Clifford DB, David Sibley L: Genotyping of toxoplasma gondii strains from immunocompromised patients reveals high prevalence of type I strains. J Clin Microbiol 2005, 43:5881-5887.
  • [36]Funato Y, Miki H: Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 2007, 9(8):1035-1057.
  • [37]Das AK, Helps NR, Cohen PT, Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 1996, 15(24):6798-6809.
  • [38]Bradley PJ, Sibley LD: Rhoptries: an arsenal of secreted virulence factors. Curr Opin Microbiol 2007, 10:582-587.
  • [39]Shimano H: Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001, 40(6):439-452.
  • [40]Grimwood J, Smith JE: Toxoplasma gondii: redistribution of tachyzoite surface protein during host cell invasion and intracellular development. Parasitol Res 1995, 81(8):657-661.
  • [41]Lekutis C, Ferguson DJP, Grigg ME, Camps M, Boothroyd JC: Surface antigens of Toxoplasma gondii: variations on a theme. Int J Parasitol 2001, 31:1285-1292.
  • [42]Dzierszinski F, Mortuaire M, Cesbron Delauw MF, Tomavo S: Targeted disruption of the glycosylphosphatidylinositol anchored surface antigen SAG3 gene in Toxoplasma gondii decreases host cell adhesion and drastically reduces virulence in mice. Mol Microbiol 2000, 37:574-582.
  • [43]Jacquet A, Coulon L, De Nève J, Daminet V, Haumont M, Garcia L, Bollen A, Jurado M, Biemans R: The surface antigen SAG3 mediates the attachment of Toxoplasma gondii to cell-surface proteoglycans. Mol Biochem Parasitol 2001, 116:35-44.
  文献评价指标  
  下载次数:27次 浏览次数:7次