期刊论文详细信息
BMC Genomics
The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum
Angela Falciatore5  Wolfgang R Hess3  Alessandra Carbone4  Lionel Navarro6  Raphaël Champeimont5  Soizic Cheminant Navarro5  Björn Voss3  Alexis Sarazin2  Hugues Richard5  Alessandra Rogato1 
[1] Institute of Biosciences and Bioresources, CNR, Naples, Italy;Swiss Federal Institute of Technology Zürich (ETH-Z), Department of Biology, Zürich, Switzerland;Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany;Institut Universitaire de France, Paris, France;CNRS UMR7238, LCQB, F-75006 Paris, France;Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique UMR8197, Institut National de la Santé et de la Recherche Médicale, U1024 Paris, France
关键词: Periodic small RNAs distribution;    DNA methylation;    Transposable Elements;    U2 snRNA;    tRNAs;    Small RNAs;    Phaeodactylum tricornutum;    Diatoms;   
Others  :  1216253
DOI  :  10.1186/1471-2164-15-698
 received in 2014-02-11, accepted in 2014-07-30,  发布年份 2014
PDF
【 摘 要 】

Background

Marine diatoms constitute a major component of eukaryotic phytoplankton and stand at the crossroads of several evolutionary lineages. These microalgae possess peculiar genomic features and novel combinations of genes acquired from bacterial, animal and plant ancestors. Furthermore, they display both DNA methylation and gene silencing activities. Yet, the biogenesis and regulatory function of small RNAs (sRNAs) remain ill defined in diatoms.

Results

Here we report the first comprehensive characterization of the sRNA landscape and its correlation with genomic and epigenomic information in Phaeodactylum tricornutum. The majority of sRNAs is 25 to 30 nt-long and maps to repetitive and silenced Transposable Elements marked by DNA methylation. A subset of this population also targets DNA methylated protein-coding genes, suggesting that gene body methylation might be sRNA-driven in diatoms. Remarkably, 25-30 nt sRNAs display a well-defined and unprecedented 180 nt-long periodic distribution at several highly methylated regions that awaits characterization. While canonical miRNAs are not detectable, other 21-25 nt sRNAs of unknown origin are highly expressed. Besides, non-coding RNAs with well-described function, namely tRNAs and U2 snRNA, constitute a major source of 21-25 nt sRNAs and likely play important roles under stressful environmental conditions.

Conclusions

P. tricornutum has evolved diversified sRNA pathways, likely implicated in the regulation of largely still uncharacterized genetic and epigenetic processes. These results uncover an unexpected complexity of diatom sRNA population and previously unappreciated features, providing new insights into the diversification of sRNA-based processes in eukaryotes.

【 授权许可】

   
2014 Rogato et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629100001244.pdf 2482KB PDF download
Figure 5. 56KB Image download
Figure 4. 27KB Image download
Figure 3. 65KB Image download
Figure 2. 21KB Image download
Figure 1. 141KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ghildiyal M, Zamore PD: Small silencing RNAs: an expanding universe. Nat Rev Genet 2009, 10:94-108.
  • [2]Gomes AQ, Nolasco S, Soares H: Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 2013, 14:16010-16039.
  • [3]Mattick JS: Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001, 2:986-991.
  • [4]Jacquier A: The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 2009, 10:833-844.
  • [5]Rinn JL, Chang HY: Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012, 81:145-166.
  • [6]Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008, 455:1193-1197.
  • [7]Kiss T: Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 2002, 109:145-148.
  • [8]Ambros V, Chen X: The regulation of genes and genomes by small RNAs. Development 2007, 134:1635-1641.
  • [9]Eggleston AK: RNA silencing. Nature 2009, 457:395.
  • [10]Molnar A, Melnyk C, Baulcombe DC: Silencing signals in plants: a long journey for small RNAs. Genome Biol 2011, 12:215. BioMed Central Full Text
  • [11]Carthew RW, Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136:642-655.
  • [12]Lee HCCS, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y: qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 2009, 459:274-277.
  • [13]Brosnan CA, Voinnet O: The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009, 21:416-425.
  • [14]Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y: A role for small RNAs in DNA double-strand break repair. Cell 2012, 149:101-112.
  • [15]Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA: Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 2002, 110:689-699.
  • [16]Le Thomas A, Fejes Tòth K, Aravin AA: To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol 2014, 15(1):204. BioMed Central Full Text
  • [17]Aravin AA, Bourc’his D: Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 2008, 22:970-975.
  • [18]Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, Shiromoto Y, Asada N, Toyoda A, Fujiyama A, Totoki Y, Shibata T, Kimura T, Nakatsuji N, Noce T, Sasaki H, Nakano T: MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 2010, 24:887-892.
  • [19]Haag JR, Pikaard CS: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 2011, 12:483-492.
  • [20]Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G: A human snoRNA with microRNA-like functions. Mol Cell 2008, 32:519-528.
  • [21]Melamed Z, Levy A, Ashwal-Fluss R, Lev-Maor G, Mekahel K, Atias N, Gilad S, Sharan R, Levy C, Kadener S, Ast G: Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions. Mol Cell 2013, 50:869-881.
  • [22]Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D: Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 2009, 324:1724-1726.
  • [23]Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, et al.: The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456:239-244.
  • [24]Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, et al.: The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004, 306:79-86.
  • [25]Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, Grandbastien MA, Bowler C: Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 2009, 10:624. BioMed Central Full Text
  • [26]Veluchamy A, Lin X, Maumus F, Rivarola M, Bhavsar J, Creasy T, O’Brien K, Sengamalay NA, Tallon LJ, Smith AD, Rayko E, Ahmed I, Le Crom S, Farrant GK, Sgro JY, Olson SA, Bondurant SS, Allen A, Rabinowicz PD, Sussman MR, Bowler C, Tirichine L: Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 2013, 4:2091.
  • [27]Norden-Krichmar TM, Allen AE, Gaasterland T, Hildebrand M: Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 2011, 6:e22870.
  • [28]Huang A, He L, Wang G: Identification and characterization of microRNAs from Phaeodactylum tricornutum by high-throughput sequencing and bioinformatics analysis. BMC Genomics 2011, 12:337. BioMed Central Full Text
  • [29]Mathelier A, Carbone A: MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 2010, 26:2226-2234.
  • [30]De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A: Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009, 37:e96.
  • [31]Depauw FA, Rogato A, Ribera D’Alcala M, Falciatore A: Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 2012, 63:1575-1591.
  • [32]Martin JHC, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson AJ, van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, et al.: Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 1994, 371:123-129.
  • [33]Boyd PW: Biogeochemistry: iron findings. Nature 2007, 446:989-991.
  • [34]Axtell MJ: Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 2013, 64:137-159.
  • [35]Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK: Criteria for annotation of plant MicroRNAs. Plant Cell 2008, 20:3186-3190.
  • [36]Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B: Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res 2012, 40:4298-4305.
  • [37]Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y, Zhou Q, Chen Q, Duan E: A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 2012, 22:1609-1612.
  • [38]Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G: Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009, 15:2147-2160.
  • [39]Mathelier A, Carbone A: Large scale chromosomal mapping of human microRNA structural clusters. Nucleic Acids Res 2013, 41:4392-4408.
  • [40]Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA: Structural basis for double-stranded RNA processing by Dicer. Science 2006, 311:195-198.
  • [41]Kozomara A, Griffiths Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-D157.
  • [42]Roesser JR: Both U2 snRNA and U12 snRNA are required for accurate splicing of exon 5 of the rat calcitonin/CGRP gene. RNA 2004, 10:1243-1250.
  • [43]Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007, 3:12. BioMed Central Full Text
  • [44]Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R: Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008, 22:2773-2785.
  • [45]Couvillion MT, Sachidanandam R, Collins K: A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev 2010, 24:2742-2747.
  • [46]Loss-Morais G, Waterhouse PM, Margis R: Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct 2013, 8:6. BioMed Central Full Text
  • [47]Nowacka M, Strozycki PM, Jackowiak P, Hojka-Osinska A, Szymanski M, Figlerowicz M: Identification of stable, high copy number, medium-sized RNA degradation intermediates that accumulate in plants under non-stress conditions. Plant Mol Biol 2013, 83:191-204.
  • [48]Gebetsberger J, Polacek N: Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 2013, 10:1798-1806.
  • [49]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
  • [50]Slotkin RK, Martienssen R: Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007, 8:272-285.
  • [51]Maheswari U, Mock T, Armbrust EV, Bowler C: Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res 2009, 37(Database issue):D1001-D1005.
  • [52]Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010, 11:204-220.
  • [53]Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC: miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 2007, 447:1126-1129.
  • [54]Liang C, Zhang X, Zou J, Xu D, Su F, Ye N: Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis. PLoS One 2010, 5:e10698.
  • [55]Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, et al.: The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 2010, 465:617-621.
  • [56]Billoud B, Nehr Z, Le Bail A, Charrier B: Computational prediction and experimental validation of microRNAs in the brown alga Ectocarpus siliculosus. Nucleic Acids Res 2014, 42:417-429.
  • [57]Gross J, Wajid S, Price DC, Zelzion E, Li J, Chan CX, Bhattacharya D: Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa. PLoS One 2013, 8:e67669.
  • [58]Cerutti H, Ma X, Msanne J, Repas T: RNA-mediated silencing in Algae: biological roles and tools for analysis of gene function. Eukaryot Cell 2011, 10:1164-1172.
  • [59]Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ: A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010, 465:584-589.
  • [60]Dueck A, Meister G: MicroRNA processing without Dicer. Genome Biol 2010, 11:123. BioMed Central Full Text
  • [61]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051-4060.
  • [62]Wahl MC, Will CL, Luhrmann R: The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
  • [63]Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L, Dreyfuss G: U1 snRNP determines mRNA length and regulates isoform expression. Cell 2012, 150:53-64.
  • [64]Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C: Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci U S A 2008, 105:10438-10443.
  • [65]Lommer M, Specht M, Roy AS, Kraemer L, Andreson R, Gutowska MA, Wolf J, Bergner SV, Schilhabel MB, Klostermeier UC Beiko RG, Rosenstiel P, Hippler M, Laroche J: Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol 2012, 13:R66. BioMed Central Full Text
  • [66]Sobala A, Hutvagner G: Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA 2011, 2:853-862.
  • [67]Franzen O, Arner E, Ferella M, Nilsson D, Respuela P, Carninci P, Hayashizaki Y, Aslund L, Andersson B, Daub CO: The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi. PLoS Negl Trop Dis 2011, 5:e1283.
  • [68]Thompson DM, Lu C, Green PJ, Parker R: tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008, 14:2095-2103.
  • [69]Garcia-Silva MR, Frugier M, Tosar JP, Correa-Dominguez A, Ronalte-Alves L, Parodi-Talice A, Rovira C, Robello C, Goldenberg S, Cayota A: A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific cytoplasmic granules. Mol Biochem Parasitol 2010, 171:64-73.
  • [70]Rebollo R, Romanish MT, Mager DL: Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012, 46:21-42.
  • [71]Fedoroff NV: Presidential address. Transposable elements, epigenetics, and genome evolution. Science 2012, 338:758-767.
  • [72]Mari-Ordonez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O: Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 2013, 45:1029-1039.
  • [73]Kulis M, Queiros AC, Beekman R, Martin-Subero JI: Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta 1829, 2013:1161-1174.
  • [74]Teixeira FK, Colot V: Repeat elements and the Arabidopsis DNA methylation landscape. Heredity (Edinb) 2010, 105:14-23.
  • [75]Qian W, Miki D, Zhang H, Liu Y, Zhang X, Tang K, Kan Y, La H, Li X, Li S, Zhu X, Shi X, Zhang K, Pontes O, Chen X, Liu R, Gong Z, Zhu J-K: A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 2012, 336:1445-1448.
  • [76]Lei J, Levin SA, Nie Q: Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proc Natl Acad Sci U S A 2014, 111:E880-E887.
  • [77]Huff JT, Zilberman D: Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 2014, 156:1286-1297.
  • [78]Guillard RRL: Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals USA: New York Edited by Smith WL, Chanley MH. 1975, 29-60.
  • [79]Emde AK, Grunert M, Weese D, Reinert K, Sperling SR: MicroRazerS: rapid alignment of small RNA reads. Bioinformatics 2010, 26:123-124.
  • [80]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [81]Dale RK, Pedersen BS, Quinlan AR: Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics 2011, 27:3423-3424.
  • [82]Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A: Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 2011, 39:D141-D145.
  • [83]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [84]Kielbasa SM, Wan R, Sato K, Horton P, Frith MC: Adaptive seeds tame genomic sequence comparison. Genome Res 2011, 21:487-493.
  • [85]Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31:3429-3431.
  • [86]Darty K, Denise A, Ponty Y: VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25:1974-1975.
  • [87]Moxon S, Schwach F, Dalmay T, Maclean D, Studholme DJ, Moulton V: A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 2008, 24:2252-2253.
  • [88]Hendrix D, Levine M, Shi W: miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 2010, 11:R39. BioMed Central Full Text
  • [89]Schwach F, Moxon S, Moulton V, Dalmay T: Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genomic Proteomic 2009, 8:472-481.
  • [90]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33:e179.
  • [91]Tang F, Hajkova P, Barton SC, Lao K, Surani MA: MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 2006, 34:e9.
  • [92]Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A: Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 2009, 10:655-661.
  • [93]Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C: Transformation of Nonselectable Reporter Genes in Marine Diatoms. Mar Biotechnol (NY) 1999, 1:239-251.
  文献评价指标  
  下载次数:55次 浏览次数:30次