期刊论文详细信息
BMC Cancer
Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region
Rimma Berenstein1  Olga Blau1  Axel Nogai1  Marlies Waechter1  Ekaterina Slonova1  Martin Schmidt-Hieber2  Annegret Kunitz1  Antonio Pezzutto1  Bernd Doerken1  Igor Wolfgang Blau1 
[1] Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, 12200, Germany
[2] Department of Hematology, Oncology and Tumourimmunology, Helios Clinic Berlin-Buch, Berlin, Germany
关键词: miR-485-5p;    DLK1-DIO3;    Cell cycle;    Senescence;    Bone marrow stromal cells;    Multiple myeloma;   
Others  :  1131651
DOI  :  10.1186/s12885-015-1078-3
 received in 2014-10-24, accepted in 2015-02-10,  发布年份 2015
PDF
【 摘 要 】

Background

Alterations and senescence in bone marrow mesenchymal stromal cells of multiple myeloma patients (MM-BMMSCs) have become an important research focus. However the role of senescence in the pathophysiology of MM is not clear.

Methods

Correlation between senescence, cell cycle and microRNA expression of MM-BMMSCs (n = 89) was analyzed. Gene expression analysis, copy number analysis and methylation specific PCR were performed by Real-Time PCR. Furthermore, cyclin E1, cyclin D1, p16 and p21 genes were analyzed at the protein level using ELISA. Cell cycle and senescence were analyzed by FACS. MiRNA transfection was performed with miR-485-5p inhibitor and mimic followed by downstream analysis of senescence and cell cycle characteristics of MM-BMMSCs. Results were analyzed by Mann–Whitney U test, Wilcoxon signed-rank test and paired t-test depending on the experimental set up.

Results

MM-BMMSCs displayed increased senescence associated β-galactosidase activity (SA-βGalA), cell cycle arrest in S phase and overexpression of microRNAs. The overexpressed microRNAs miR-485-5p and miR-519d are located on DLK1-DIO3 and C19MC, respectively. Analyses revealed copy number accumulation and hypomethylation of both clusters. KMS12-PE myeloma cells decreased SA-βGalA and influenced cell cycle characteristics of MM-BMMSCs. MiR-485-5p was significantly decreased in co-cultured MM-BMMSCs in connection with an increased methylation of DLK1-DIO3. Modification of miR-485-5p levels using microRNA mimic or inhibitor altered senescence and cell cycle characteristics of MM-BMMSCs.

Conclusions

Here, we show for the first time that MM-BMMSCs have aberrant methylation and copy number of the DLK1-DIO3 and C19MC genomic region. Furthermore, this is the first study pointing that multiple myeloma cells in vitro reduce both the senescence phenotype of MM-BMMSCs and the expression of miR-223 and miR-485-5p. Thus, it is questionable whether senescence of MM-BMMSCs plays a pathological role in active multiple myeloma or is more important when cell interaction with myeloma cells is inhibited. Furthermore, we found that MiR-485-5p, which is located on the DLK1-DIO3 cluster, seems to participate in the regulation of senescence status and cell cycle characteristics of MM-BMMSCs. Thus, further exploration of the microRNAs of DLK1-DIO3 could provide further insights into the origin of the senescence state and its reversal in MM-BMMSCs.

【 授权许可】

   
2015 Berenstein et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303023121741.pdf 1953KB PDF download
Figure 5. 88KB Image download
Figure 4. 82KB Image download
Figure 3. 84KB Image download
Figure 2. 140KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Chesi M, Bergsagel PL: Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int J Hematol 2013, 97(3):313-23.
  • [2]Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC: Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007, 7(8):585-98.
  • [3]Katz BZ: Adhesion molecules–the lifelines of multiple myeloma cells. Semin Cancer Biol 2010, 20(3):186-95.
  • [4]Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM: Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol 2012, 2012:157496.
  • [5]Gilmore TD: Multiple myeloma: lusting for NF-kappaB. Cancer Cell 2007, 12(2):95-7.
  • [6]Li ZW, Chen H, Campbell RA, Bonavida B, Berenson JR: NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 2008, 15(4):391-9.
  • [7]Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC: Advances in biology of multiple myeloma: clinical applications. Blood 2004, 104(3):607-18.
  • [8]Landowski TH, Olashaw NE, Agrawal D, Dalton WS: Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 2003, 22(16):2417-21.
  • [9]Neri P, Ren L, Azab AK, Brentnall M, Gratton K, Klimowicz AC, et al.: Integrin beta7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 2011, 117(23):6202-13.
  • [10]Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA, et al.: Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009, 69(3):1009-15.
  • [11]Garayoa M, Garcia JL, Santamaria C, Garcia-Gomez A, Blanco JF, Pandiella A, et al.: Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 2009, 23(8):1515-27.
  • [12]Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, et al.: Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma 2007, 48(10):2032-41.
  • [13]Reagan MR, Ghobrial IM: Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res 2012, 18(2):342-9.
  • [14]Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM: Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 2001, 91(7):1219-30.
  • [15]Andre T, Meuleman N, Stamatopoulos B, De Bruyn C, Pieters K, Bron D, et al.: Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One 2013, 8(3):e59756.
  • [16]Coppe JP, Desprez PY, Krtolica A, Campisi J: The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010, 5:99-118.
  • [17]Campisi J, D'Adda-di-Fagagna F: Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 8(9):729-40.
  • [18]van Deursen JM: The role of senescent cells in ageing. Nature 2014, 509(7501):439-46.
  • [19]Fei C, Zhao Y, Guo J, Gu S, Li X, Chang C: Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes. Eur J Haematol 2014, 96(6):476-86.
  • [20]Chen J, Wang M, Guo M, Xie Y, Cong YS: miR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One 2013, 8(11):e80266.
  • [21]Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M, et al.: MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2010, 2(6):333-43.
  • [22]Nidadavolu LS, Niedernhofer LJ, Khan SA: Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress. Aging (Albany NY) 2013, 5(6):460-73.
  • [23]Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh RM, Chen T, et al.: Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet 2012, 44(4):398-405. S391-392
  • [24]da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC: Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008, 24(6):306-16.
  • [25]Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, et al.: The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 2008, 6(6):e135.
  • [26]Flor I, Bullerdiek J: The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol 2012, 227(3):270-4.
  • [27]Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR: Pregnancy-associated miRNA-clusters. J Reprod Immunol 2013, 97(1):51-61.
  • [28]Berenstein R, Blau IW, Nogai A, Wächter M, Pezzutto A, Dörken B, et al.: Aberrant expression Of miRNA and mRNA Of cell cycle and adhesion-related genes in bone marrow stroma cells derived from patients with multiple myeloma. Blood 2013, 122(21):3149.
  • [29]Chi J, Ballabio E, Chen XH, Kusec R, Taylor S, Hay D, et al.: MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct 2011, 6:23. BioMed Central Full Text
  • [30]Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, et al.: MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 2008, 105(35):12885-90.
  • [31]Olivieri F, Rippo MR, Monsurro V, Salvioli S, Capri M, Procopio AD, et al.: MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 2013, 12(4):1056-68.
  • [32]Abdelmohsen K, Srikantan S, Tominaga K, Kang MJ, Yaniv Y, Martindale JL, et al.: Growth inhibition by miR-519 via multiple p21-inducing pathways. Mol Cell Biol 2012, 32(13):2530-48.
  • [33]Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, et al.: Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 2009, 11(5):570-83.
  • [34]Blau O: Bone marrow stromal cells in the pathogenesis of acute myeloid leukemia. Front Biosci (Landmark Ed) 2014, 19:171-80.
  • [35]Blau O, Baldus CD, Hofmann WK, Thiel G, Nolte F, Burmeister T, et al.: Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 2011, 118(20):5583-92.
  • [36]Noppe G, Dekker P, de Koning-Treurniet C, Blom J, van Heemst D, Dirks RW, et al.: Rapid flow cytometric method for measuring senescence associated beta-galactosidase activity in human fibroblasts. Cytometry A 2009, 75(11):910-6.
  • [37]Rio DC, Ares M Jr, Hannon GJ, Nilsen TW: Purification of RNA Using TRIzol (TRI Reagent). CSHL Press, Cold Spring Harbor, NY, USA; 2010.
  • [38]Shi R, Chiang VL: Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005, 39(4):519-25.
  • [39]Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339(1):62-6.
  • [40]Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al.: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009, 37(6):e45.
  • [41]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [42]Frassanito MA, Rao L, Moschetta M, Ria R, Di Marzo L, De Luisi A, et al.: Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 2013, 28(4):904-16.
  • [43]Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, et al.: Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007, 21(5):1079-88.
  • [44]Feliciano A, Sanchez-Sendra B, Kondoh H, Lleonart ME: MicroRNAs regulate key effector pathways of senescence. J Aging Res 2011, 2011:205378.
  • [45]Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ: miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res 2011, 30:110. BioMed Central Full Text
  • [46]Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, et al.: MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells 2012, 30(7):1362-72.
  • [47]Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, et al.: A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 2012, 19(4):713-21.
  • [48]Noll JE, Williams SA, Tong CM, Wang H, Quach JM, Purton LE, et al.: Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica 2014, 99(1):163-71.
  • [49]Kuilman T, Michaloglou C, Mooi WJ, Peeper DS: The essence of senescence. Genes Dev 2010, 24(22):2463-79.
  • [50]Manodoro F, Marzec J, Chaplin T, Miraki-Moud F, Moravcsik E, Jovanovic JV, et al.: Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia. Blood 2014, 123(13):2066-74.
  • [51]Di Martino MT, Gulla A, Cantafio ME, Lionetti M, Leone E, Amodio N, et al.: In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget 2013, 4(2):242-55.
  文献评价指标  
  下载次数:34次 浏览次数:6次