BMC Neuroscience | |
Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus | |
Josef Halámek1  Pavel Jurák1  Pavel Daniel4  Matt M Stead5  Daniel J Shaw2  Robert Roman3  Jan Cimbálník6  Milan Brázdil4  | |
[1] Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic;Behavioural and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic;Department of Physiology, Medical Faculty of Masaryk University, Brno, Czech Republic;Department of Neurology, Brno Epilepsy Center, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Pekařská 53, Brno 65691, Czech Republic;Department of Neurology, Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA;International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic | |
关键词: Human cognition; Epilepsy; Hippocampal ripples; High-frequency oscillations; | |
Others : 1228618 DOI : 10.1186/s12868-015-0184-0 |
|
received in 2015-01-19, accepted in 2015-07-13, 发布年份 2015 | |
【 摘 要 】
Background
Until now there has been no way of distinguishing between physiological and epileptic hippocampal ripples in intracranial recordings. In the present study we addressed this by investigating the effect of cognitive stimulation on interictal high frequency oscillations in the ripple range (80–250 Hz) within epileptic (EH) and non-epileptic hippocampus (NH).
Methods
We analyzed depth EEG recordings in 10 patients with intractable epilepsy, in whom hippocampal activity was recorded initially during quiet wakefulness and subsequently during a simple cognitive task. Using automated detection of ripples based on amplitude of the power envelope, we analyzed ripple rate (RR) in the cognitive and resting period, within EH and NH.
Results
Compared to quiet wakefulness we observed a significant reduction of RR during cognitive stimulation in EH, while it remained statistically marginal in NH. Further, we investigated the direct impact of cognitive stimuli on ripples (i.e. immediately post-stimulus), which showed a transient statistically significant suppression of ripples in the first second after stimuli onset in NH only.
Conclusion
Our results point to a differential reactivity of ripples within EH and NH to cognitive stimulation.
【 授权许可】
2015 Brázdil et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151017020359612.pdf | 1346KB | download | |
Figure5. | 35KB | Image | download |
Figure4. | 37KB | Image | download |
Figure3. | 16KB | Image | download |
Figure2. | 16KB | Image | download |
Figure1. | 16KB | Image | download |
【 图 表 】
Figure1.
Figure2.
Figure3.
Figure4.
Figure5.
【 参考文献 】
- [1]Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K: High-frequency network oscillation in the hippocampus. Science (80) 1992, 256:1025-1027.
- [2]Bragin A, Engel J, Wilson CL, Fried I, Buzsaki G: High-frequency oscillations in human brain. Hippocampus 1999, 9:137-142.
- [3]Staba RJ, Wilson CL, Bragin A, Fried I, Engel J: Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 2002, 88:1743-1752.
- [4]Engel J, Bragin A, Staba R, Mody I: High-frequency oscillations: what is normal and what is not? Epilepsia 2009, 50:598-604.
- [5]Engel J, da Silva FL: High-frequency oscillations—where we are and where we need to go. Prog Neurobiol 2012, 98:316-318.
- [6]Buzsaki G, da Silva FL: High frequency oscillations in the intact brain. Prog Neurobiol 2012, 98:241-249.
- [7]Axmacher N, Elger CE, Fell J: Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 2008, 131:1806-1817.
- [8]Carr MF, Jadhav SP, Frank LM: Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 2011, 14:147-153.
- [9]Girardeau G, Zugaro M: Hippocampal ripples and memory consolidation. Curr Opin Neurobiol 2011, 21:452-459.
- [10]Lachaux J-P, Axmacher N, Mormann F, Halgren E, Crone NE: High-frequency neural activity and human cognition: {Past}, present and possible future of intracranial {EEG research}. Prog Neurobiol 2012, 98:279-301.
- [11]Buzsaki G: Hippocampal sharp waves—their origin and significance. Brain Res 1986, 398:242-252.
- [12]Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G: Gamma (40–100-Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 1995, 15:47-60.
- [13]Bragin A, Wilson CL, Almajano J, Mody I, Engel T: High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 2004, 45:1017-1023.
- [14]Jacobs J, Staba R, Asano E, Otsubo H, Wu JY, Zijlmans M, et al.: High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 2012, 98:302-315.
- [15]Crepon B, Navarro V, Hasboun D, Clemenceau S, Martinerie J, Baulac M, et al.: Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 2010, 133:33-45.
- [16]Talairach J (1967) Atlas D’anatomie Stéréotaxique Du Télencéphale; Études Anatomo-Radiologiques, Par. J. Talairach [et Al.]. Masson, Paris
- [17]Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Cascino GJ, et al.: High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 2008, 131:928-937.
- [18]Ibarz JM, Foffani G, Cid E, Inostroza M, de la Prida L: Emergent dynamics of fast ripples in the epileptic hippocampus. J Neurosci 2010, 30:16249-16261.
- [19]Bragin A, Benassi SK, Kheiri F, Engel J: Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia 2011, 52:45-52.
- [20]Maier N, Tejero-Cantero A, Dorrn AL, Winterer J, Beed PS, Morris G, et al.: Coherent phasic excitation during hippocampal ripples. Neuron 2011, 72:137-152.
- [21]Alvarado-Rojas C, Huberfeld G, Baulac M, Clemenceau S, Charpier S, Miles R, et al.: Different mechanisms of ripple-like oscillations in the human epileptic subiculum. Ann Neurol 2015, 77:281-290.
- [22]Gulyás AI, Freund TT (2015) Generation of physiological and pathological high frequency oscillations: the role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr Opin Neurobiol 31:26–32. [{SI}: {Brain} Rhythms and Dynamic Coordination]
- [23]Csicsvari J, Hirase H, Mamiya A, Buzsaki G: Ensemble patterns of hippocampal CA3–CA1 neurons during sharp wave-associated population events. Neuron 2000, 28:585-594.
- [24]Klausberger T, Somogyi P: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science (80) 2008, 321:53-57.
- [25]Kudrimoti HS, Barnes CA, McNaughton BL: Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 1999, 19:4090-4101.
- [26]O’Neill J, Senior T, Csicsvari J: Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 2006, 49:143-155.
- [27]Davidson TJ, Kloosterman F, Wilson MA: Hippocampal replay of extended experience. Neuron 2009, 63:497-507.
- [28]Gupta AS, van der Meer MAA, Touretzky DS, Redish AD: Hippocampal replay is not a simple function of experience. Neuron 2010, 65:695-705.
- [29]Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, et al.: EEG sharp waves and sparse ensemble unit activity in the Macaque hippocampus. J Neurophysiol 2007, 98:898-910.
- [30]Van Quyen M, Le Bragin A, Staba R, Crepon B, Wilson CL, Engel J: Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. J Neurosci 2008, 28:6104-6110.
- [31]Bagshaw AP, Jacobs J, LeVan P, Dubeau F, Gotman J: Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy. Epilepsia 2009, 50:617-628.
- [32]Steriade M, Contreras D, Amzica F: Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci 1994, 17:199-208.
- [33]Dinner DS: Effect of sleep on epilepsy. J Clin Neurophysiol 2002, 19:504-513.
- [34]De Guzman PH, Nazer F, Dickson CT: Short-duration epileptic discharges show a distinct phase preference during ongoing hippocampal slow oscillations. J Neurophysiol 2010, 104:2194-2202.
- [35]Polich J: Updating p300: an integrative theory of P3a and P3b. Clin Neurophysiol 2007, 118:2128-2148.
- [36]Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB: Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 2009, 12:1222-1223.
- [37]Ego-Stengel V, Wilson MA: Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 2010, 20:1-10.
- [38]Nokia MS, Mikkonen JE, Penttonen M, Wikgren J: Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Front Behav Neurosci 2012, 6:84.
- [39]Miller KJ, Zanos S, Fetz EE, den Nijs M, Ojemann JG: Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J Neurosci 2009, 29:3132-3137.
- [40]Manning JR, Jacobs J, Fried I, Kahana MJ: Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 2009, 29:13613-13620.
- [41]Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Bower MR, Vasoli V, et al.: High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 2014, 137(Pt 8):2231-2244.
- [42]Brazdil M, Dobsik M, Mikl M, Hlustik P, Daniel P, Pazourkova M, et al.: Combined event-related fMRI and intracerebral ERP study of an auditory oddball task. Neuroimage 2005, 26:285-293.
- [43]Matsumoto A, Brinkmann BH, Stead SM, Matsumoto J, Kucewicz MT, Marsh WR, et al.: Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol 2013, 110:1958-1964.
- [44]Jefferys JGR, de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, et al.: Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 2012, 98:250-264.