期刊论文详细信息
BMC Genomics
Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly
Jordi Garcia-Mas3  Sebastián E Ramos-Onsins4  Marta Pujol3  Jordi Morata3  Walter Sanseverino1  Pablo Madriz-Masis3  Aurora Ruiz-Herrera2  Jason M Argyris3 
[1]Present Address: Sequentia Biotech, Campus UAB - Edifici CRAG, Bellaterra - Cerdanyola del Vallès, Barcelona, 08193, Spain
[2]Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB, Barcelona, 08193, Spain
[3]IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
[4]Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
关键词: Karyotype;    FISH;    Pseudomolecules;    Scaffold;    Genome;    SNP;    Melon;   
Others  :  1118293
DOI  :  10.1186/s12864-014-1196-3
 received in 2014-07-15, accepted in 2014-12-22,  发布年份 2015
PDF
【 摘 要 】

Background

The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds.

Results

A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed.

Conclusions

By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence.

【 授权许可】

   
2015 Argyris et al.; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150206022438257.pdf 1702KB PDF download
Figure 3. 52KB Image download
Figure 2. 139KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al.: A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 2008, 321(5890):836-8.
  • [2]Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, et al.: A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009, 461(7267):1135-U1237.
  • [3]Zhang BC, Tolstikov V, Turnbull C, Hicks LM, Fiehn O: Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A 2010, 107(30):13532-7.
  • [4]Pech JC, Bouzayen M, Latche A: Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 2008, 175(1–2):114-20.
  • [5]Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei ZJ, et al.: A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). Bmc Plant Biology 2011, 11:111. BioMed Central Full Text
  • [6]Clepet C, Joobeur T, Zheng Y, Jublot D, Huang MY, Truniger V, et al.: Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics 2011, 12:252. BioMed Central Full Text
  • [7]Michael TP, Jackson S: The First 50 Plant Genomes. Plant Genome 2013, 6(2):1-7.
  • [8]Hamilton JP, Buell CR: Advances in plant genome sequencing. Plant J 2012, 70(1):177-90.
  • [9]Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al.: The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 2012, 109(29):11872-7.
  • [10]Kumar S, Banks TW, Cloutier S: SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012, 2012:831460.
  • [11]Ganal MW, Altmann T, Roder MS: SNP identification in crop plants. Curr Opin Plant Biol 2009, 12(2):211-7.
  • [12]Perkel J: SNP genotyping: six technologies that keyed a revolution. Nat Methods 2008, 5(5):447-53.
  • [13]Lewin HA, Larkin DM, Pontius J, O’Brien SJ: Every genome sequence needs a good map. Genome Res 2009, 19(11):1925-8.
  • [14]Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, et al.: The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 2013, 45(5):487-94.
  • [15]Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al.: The genome of woodland strawberry (Fragaria vesca). Nat Genet 2010, 43(2):109-16.
  • [16]Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al.: The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 2010, 42(10):833-9.
  • [17]Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, et al.: A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 2012, 7(1):e29453.
  • [18]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al.: The genome of the cucumber, Cucumis sativus L. Nat Genet 2009, 41(12):1275-81.
  • [19]Esteras C, Formisano G, Roig C, Diaz A, Blanca J, Garcia-Mas J, et al.: SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 2013, 126(5):1285-303.
  • [20]Chen J, Xiao-Hui Z: Cucumis. In Wild Crop Relatives: Genomic and Breeding Resources. Edited by Kole C. Springer, Heidelberg; 2011:67-90.
  • [21]Zhang Y, Chen J, Yi H, Feng J, Wu M: Staining and slide-preparing technique of mitotic chromosomes and its use in karyotype determination in Cucumis melo L. Acta Botany Boreal-Occident Sinica 2005, 25:1735-9.
  • [22]Ramachandran C, Seshadri VS: Cytological analysis of the genome of cucumber (Cucumis-Sativus L) and muskmelon (Cucumis-Melo L). Zeitschrift Fur Pflanzenzuchtung 1986, 96(1):25-38.
  • [23]Ma D, Guo Z, Zhang C, Gao S, Wang M: A study on chromosome number and karyotype of melons (Cucumis melo L.). Acta Horticulturae 1995, 402:61-5.
  • [24]Jiang J, Gill BS: Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 2006, 49(9):1057-68.
  • [25]Kato A, Vega JM, Han F, Lamb JC, Birchler JA: Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 2005, 8(2):148-54.
  • [26]Sun JY, Zhang ZH, Zong X, Huang SW, Li ZY, Han YH: A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics 2013, 14:461. BioMed Central Full Text
  • [27]Lou Q, He Y, Cheng C, Zhang Z, Li J, Huang S, et al.: Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PLoS One 2013, 8(5):e62676.
  • [28]Lou QF, Zhang YX, He YH, Li J, Jia L, Cheng CY, et al.: Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J 2014, 78(1):169-79.
  • [29]Koo DH, Nam YW, Choi D, Bang JW, de Jong H, Hur Y: Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res 2010, 18(3):325-36.
  • [30]Chen JF, Staub JE, Adelberg JW, Jiang JM: Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can J Bot 1999, 77(3):389-93.
  • [31]Hoshi Y, Kido M, Yagi K, Tagashira N, Morikawa A, Nagano K: Somatic chromosome differentiation in Cucumis melo L. and C. metuliferus E.Mey. ex Naudin. Chromosome Bot 2013, 8:7-12.
  • [32]Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, et al.: Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci U S A 2009, 106(35):14937-41.
  • [33]Liu C, Liu J, Li H, Zhang Z, Han Y, Huang S, et al.: Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization. Cytogenet Genome Res 2010, 129(1–3):241-9.
  • [34]Yang LM, Koo DH, Li DW, Zhang T, Jiang JM, Luan FS, et al.: Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 2014, 77(1):16-30.
  • [35]Gonzalo MJ, Claveria E, Monforte AJ, Dolcet-Sanjuan R: Parthenogenic haploids in Melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hort Sci 2011, 136(2):145-54.
  • [36]Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese AL, Arroyo M, et al.: Construction of a reference linkage map for melon. Genome 2001, 44(5):836-45.
  • [37]Eduardo I, Arus P, Monforte AJ: Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 2005, 112(1):139-48.
  • [38]Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al.: The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 2012, 45(1):51-8.
  • [39]Potato Genome Sequencing Consortium T: Genome sequence and analysis of the tuber crop potato Nature 2011, 475(7355):189-95.
  • [40]Tomato Genome Consortium T: The tomato genome sequence provides insights into fleshy fruit evolution Nature 2012, 485(7400):635-41.
  • [41]Sharma SK, Bolser D, de Boer J, Sonderkaer M, Amoros W, Carboni MF, et al.: Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 (Bethesda) 2013, 3(11):2031-47.
  • [42]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al.: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463(7278):178-83.
  • [43]Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al.: The genome of Theobroma cacao. Nat Genet 2011, 43(2):101-8.
  • [44]Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, et al.: High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 2010, 11:38. BioMed Central Full Text
  • [45]Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, et al.: The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 2011, 43(10):1035-9.
  • [46]Renauld H: Heterochromatin: a meiotic matchmaker? Trends Cell Biol 1997, 7(5):201-5.
  • [47]Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, et al.: An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 2014, 15(1):312. BioMed Central Full Text
  • [48]Chamala S, Chanderbali AS, Der JP, Lan T, Walts B, Albert VA, et al.: Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 2013, 342(6165):1516-7.
  • [49]Gonzalez VM, Garcia-Mas J, Arus P, Puigdomenech P: Generation of a BAC-based physical map of the melon genome. BMC Genomics 2010, 11:339. BioMed Central Full Text
  • [50]Sonah H, Bastien M, Iquira E, Tardivel A, Legare G, Boyle B, et al.: An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 2013, 8(1):e54603.
  • [51]Sanseverino W, Henaff E, Casacuberta JM, Garcia-Mas J. Genetic Variability in Melon Resequenced Varieties. Poster session presented at: Plant and Animal Genome Conference XXI; 2013 Jan 12-16; San Diego, CA.
  • [52]Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P: Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 2004, 108(4):750-8.
  • [53]Vegas J, Garcia-Mas J, Monforte AJ: Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 2013, 126(6):1531-44.
  • [54]Essafi A, Diaz-Pendon JA, Moriones E, Monforte AJ, Garcia-Mas J, Martin-Hernandez AM: Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theor Appl Genet 2009, 118(2):275-84.
  • [55]Schnable PS, Hsia AP, Nikolau BJ: Genetic recombination in plants. Curr Opin Plant Biol 1998, 1(2):123-9.
  • [56]Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK: Opinion - Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 2007, 8(1):77-84.
  • [57]Doyle JJ, Doyle JL: A rapid total DNA preparation procedure for fresh plant tissue. Focus 1990, 12:13-5.
  • [58]Gonzalez-Neira A: The GoldenGate genotyping assay: custom design, processing, and data analysis. Methods Mol Biol 2013, 1015:147-53.
  • [59]Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, et al.: Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 2012, 7(4):e35668.
  • [60]Stam P: Construction of Integrated genetic-linkage maps by means of a new computer package - joinmap. Plant J 1993, 3(5):739-44.
  • [61]Moretto M, Cestaro A, Troggio M, Costa F, Velasco R. Harry Plotter: A user friendly program to visualize genome and genetic map features. In: ECCB10, 9th European Conference Computational Biology; 2010 Sep 26-29; Ghent, Belgium.
  • [62]Brennicke A, Hemleben V: Sequence-analysis of the cloned cucumis-melo highly repetitive satellite DNA. Zeitschrift Fur Naturforschung C 1983, 38(11–1):1062-5.
  • [63]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-8.
  • [64]van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P: Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 2003, 51(5):703-18.
  • [65]Ruiz-Herrera A, Garcia F, Fronicke L, Ponsa M, Egozcue J, Caldes MG, et al.: Conservation of aphidicolin-induced fragile sites in Papionini (Primates) species and humans. Chromosome Res 2004, 12(7):683-90.
  • [66]Perin C, Hagen S, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, et al.: A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 2002, 104(6–7):1017-34.
  文献评价指标  
  下载次数:9次 浏览次数:8次