期刊论文详细信息
BMC Evolutionary Biology
Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci
Hiroaki Setoguchi2  Yuki Mitsui1 
[1] Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan;Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
关键词: Riparian plants;    Isolation-with-migration model;    Gene flow;    Effective population size;    Divergence time;    Adaptive divergence;   
Others  :  1130524
DOI  :  10.1186/1471-2148-12-254
 received in 2012-09-03, accepted in 2012-12-19,  发布年份 2012
PDF
【 摘 要 】

Background

Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci.

Results

The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations.

Conclusions

This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence.

【 授权许可】

   
2012 Mitsui and Setoguchi; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150227004224377.pdf 2508KB PDF download
Figure 4. 48KB Image download
Figure 3. 82KB Image download
Figure 2. 53KB Image download
Figure 1. 274KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Schluter D: The Ecology of Adaptive Radiation. New York: Oxford University Press; 2000.
  • [2]Schluter D: Evidence for ecological speciation and its alternative. Science 2009, 323:737-741.
  • [3]Coyne JA, Orr HA: Speciation. Sunderland, MA: Sinauer Associates; 2004.
  • [4]Rundle HD, Nosil P: Ecological speciation. Ecol Lett 2005, 8:336-352.
  • [5]Sobel JM, Chen GF, Watt LR, Schemske DW: The biology of speciation. Evolution 2010, 62:295-315.
  • [6]Gavrilets S, Vose A: Dynamic patterns of adaptive radiation. Proc Natl Acad Sci USA 2005, 102:18040-18045.
  • [7]Hendry AP, Nosil P, Rieseberg LH: The speed of ecological speciation. Funct Ecol 2007, 21:455-464.
  • [8]Hey J, Nielsen R: Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 2004, 167:747-760.
  • [9]Hey J: The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analysis. Mol Biol Evol 2010, 27:921-933.
  • [10]van Steenis CGGJ: Rheophytes of the World. Netherlands: Sijithoff & Noordhoff; 1981.
  • [11]Usukura M, Imaichi R, Kato M: Leaf morphology of a facultative rheophyte, Farfugium japonicum var. luchuense (Compositae). J Plant Res 1994, 107:263-267.
  • [12]Imaichi R, Kato M: Speciation and morphological evolution in rheophytes. In Evolution and Diversification of Land Plants. Edited by Iwatsuki K, Raven PH. Tokyo: Springer; 1997:309-318.
  • [13]Kato M: Evolutionary Morphology of plants. Tokyo: University of Tokyo Press; 1999. (in Japanese)
  • [14]Tsukaya H: Leaf anatomy of rheophyte, Dendranthema yoshinaganthum (Asteraceae), and of hybrids between D. yoshinaganthum and a closely related non-rheophyte, D. indicum. J Plant Res 2002, 115:329-333.
  • [15]Setoguchi H, Kajimaru G: Leaf morphology of the rheophyte, Rhododendron indicum f. otakumi (Ericaceae). Acta Phytotax Geobot 2004, 55:45-54.
  • [16]Nomura N, Setoguchi H, Takaso T: Functional consequences of stenophylly for leaf productivity: comparison of the anatomy and physiology of a rheophyte, Farfugium japonicum var. luchuence, and a related non-rheophyte, F. japonicum (Asteraceae). J Plant Res 2006, 119:645-656.
  • [17]Mitsui Y, Nomura N, Isagi Y, Tobe H, Setoguchi H: Ecological barriers to gene flow between riparian and forest species of Ainsliaea (Asteraceae). Evolution 2011, 65:335-349.
  • [18]van Steenis CGGJ: Rheophytes of the world: supplement. Allertonia 1987, 4:267-330.
  • [19]Mitsui Y, Setoguchi H: Recent origin and adaptive diversification of Ainsliaea (Asteraceae) in the Ryukyu Islands: molecular phylogenetic inference using nuclear microsatellite markers. Plant Syst Evol 2012, 298:985-996.
  • [20]Watanabe K, Yahara T, Kadota H: Natural hybrid populations between chasmogamous and cleistogamous species, Ainsliaea faurieana and A. apiculata (Asteraceae; Mutisiae): morphology, cytology, reproductive mode and allozyme variation. Plant Spec Biol 1992, 7:49-59.
  • [21]Mitsui Y, Chen ST, Zhou ZK, Peng CI, Deng YF, Setoguchi H: Phylogeny and biogeography of the genus Ainsliaea (Asteraceae) in the Sino-Japanese Region based on nuclear rDNA and plastid DNA sequence data. Ann Bot 2008, 101:111-124.
  • [22]Koyama H: Ainsliaea DC. In Flora of Japan. Volume IIIb. Edited by Iwatsuki K, Yamazaki T, Boufford DE, Ohba H. Tokyo: Kodansha; 1995:207-209.
  • [23]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
  • [24]Evanno GS, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [25]Duchesne P, Turgeon J: FLOCK: A method for quick mapping of admixture without source samples. Mol Ecol Res 2009, 9:1333-1344.
  • [26]Hey J, Won YJ, Sivasundar A, Nielsen R, Markert JA: Using nuclear haplotypes with microsatellites to study gene flow between recently separated Cichlid species. Mol Ecol 2004, 13:909-919.
  • [27]Ikeda H, Fujii N, Setoguchi H: Application of the Isolation with Migration model demonstrates the Pleistocene origin of geographic differentiation in Cardamine nipponica (Brassicaceae), an endemic Japanese alpine plant. Mol Biol Evol 2009, 26:2207-2216.
  • [28]Verheyen E, Salzburger W, Snoeks J, Meyer A: Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 2003, 300:325-329.
  • [29]Aguirre WE, Ellis KE, Kusenda M, Bell MA: Phenotypic variation and sexual dimorphism in anadromous threespine stickleback: implications for postglacial adaptive radiation. Biol J Linn Soc 2008, 95:465-478.
  • [30]Peccoud J, Simon J-C, McLaughlin HJ, Moran NA: Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. Proc Natl Acad Sci USA 2009, 106:16315-16320.
  • [31]Nakamura K, Denda T, Kokubugata G, Forster PI, Wilson G, Pen C-I, Yokota M: Molecular phylogeny reveals an antitropical distribution and local diversification of Solenogyne (Asteraceae) in the Ryukyu Archipelago of Japan and Australia. Biol J Linn Soc 2012, 105:197-217.
  • [32]Hey J: Recent advances in assessing gene flow between diverging populations and species. Curr Opin Genet Dev 2006, 16:592-596.
  • [33]Wright SJ: Evolution in mendelian populations. Genetics 1931, 16:97-159.
  • [34]Takahara H, Matsumoto J: Climatological study of precipitation distribution in Yaku-shima Island, southern Japan. J Geog 2002, 111:726-746.
  • [35]Kimura M: Quaternary paleogeography of the Ryukyu arc. J Geog 1996, 105:259-285.
  • [36]Reznick DN, Ghalambor CK: The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 2001, 112–113:183-198.
  • [37]Mitsui Y, Isagi Y, Setoguchi H: Multiple spatial scale patterns of genetic diversity in riparian populations of Ainsliaea faurieana (Asteraceae) on Yakushima Island, Japan. Am J Bot 2010, 97:101-110.
  • [38]Becquet C, Przeworski M: Learning about modes of speciation by computational approaches. Evolution 2009, 63:2547-2562.
  • [39]Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull Bot Soc Am 1987, 19:11-15.
  • [40]Álvarez I, Costa A, Feliner GN: Selecting single-copy nuclear genes for plant phylogenetics: a preliminary analysis for the Senecioneae (Asteraceae). J Mol Evol 2008, 66:276-291.
  • [41]Chapman MA, Cheng JC, Weisman D, Kesseli RV, Burke JM: Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 2007, 115:747-755.
  • [42]Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-2497.
  • [43]Harrigan RJ, Mazza ME, Sorenson MD: Computation vs. cloning: evaluation of two methods for haplotype determination. Mol Ecol Res 2008, 8:1239-1248.
  • [44]Nei M: Molecular Evolutionary Genetics. New York: Columbia University Press; 1987.
  • [45]Watterson GA: On the number of segregating sites in genetical medels without recombination. Theor Popul Biol 1975, 7:256-276.
  • [46]Hudson RR, Kaplan NL: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111:147-164.
  • [47]Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics 1993, 133:693-709.
  • [48]Hudson RR, Kreitman M, Aguade M: A test of neutral molecular evolution based on nucleotide data. Genetics 1987, 116:153-159.
  • [49]Bryant D, Moulton V: Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004, 21:255-265.
  • [50]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
  • [51]Nordborg M, Hu TT, Ishino Y, et al.: The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 2005, 3:e196.
  • [52]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [53]Nielsen R, Wakeley J: Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 2001, 158:885-896.
  • [54]Hey J, Nielsen R: Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 2007, 104:2785-2790.
  • [55]Kim KJ, Choi KS, Jansen RK: Two chloroplast DNA inversions originated simultaneously during the early evolution of the Sunflower family (Asteraceae). Mol Biol Evol 2005, 22:1783-1792.
  文献评价指标  
  下载次数:40次 浏览次数:35次