期刊论文详细信息
BMC Research Notes
Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase
Eric Chabriere1  Christian Jelsch2  Benoit Guillot2  Claude Lecomte2  Jurgen Koepke3  Dorothee Liebschner2  Mikael Elias4 
[1] Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, IRD/CNRS, Université de la Méditerranée (Aix-Marseille II), 13 385 Marseille, France;Cristallographie Résonance Magnétique et Modélisations, CNRS UMR 7036 Université de Lorraine, Vandoeuvre-lès-Nancy, France;Max-Planck-Inst. of Biophysics, Department of Molecular Membrane Biol., Frankfurt/Main, Germany;Weizmann Institute of Science, Biological Chemistry, Rehovot, Israel
关键词: MoPro software;    DFPase;    Hydrogen atoms;    Sub-Ångstrom X-ray crystallography;   
Others  :  1141952
DOI  :  10.1186/1756-0500-6-308
 received in 2013-03-27, accepted in 2013-07-27,  发布年份 2013
PDF
【 摘 要 】

Background

Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms.

Results

A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed.

Conclusions

A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism.

【 授权许可】

   
2013 Elias et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327174938297.pdf 735KB PDF download
Figure 4. 46KB Image download
Figure 3. 47KB Image download
Figure 2. 23KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Raushel FM: Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 2002, 5:288-295.
  • [2]Singh BK: Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 2009, 7:156-164.
  • [3]Caldwell SR, Newcomb JR, Schlecht KA, Raushel FM: Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 1991, 30:7438-7444.
  • [4]Afriat L, Roodveldt C, Manco G, Tawfik DS: The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 2006, 45:13677-13686.
  • [5]Del Vecchio P, Elias M, Merone L, Graziano G, Dupuy J, Mandrich L, Carullo P, Fournier B, Rochu D, Rossi M, et al.: Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 2009, 13:461-470.
  • [6]Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, et al.: Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 2008, 379:1017-1028.
  • [7]Merone L, Mandrich L, Rossi M, Manco G: A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 2005, 9:297-305.
  • [8]Elias M, Tawfik DS: Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J Biol Chem 2012, 287:11-20.
  • [9]Ben-David M, Elias M, Filippi JJ, Dunach E, Silman I, Sussman JL, Tawfik DS: Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. J Mol Biol 2012, 418:181-196.
  • [10]Scharff EI, Koepke J, Fritzsch G, Lucke C, Ruterjans H: Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. Structure 2001, 9:493-502.
  • [11]Koepke J, Scharff EI, Lucke C, Ruterjans H, Fritzsch G: Atomic resolution crystal structure of squid ganglion DFPase. Acta Crystallogr D Biol Crystallogr 2002, 58:1757-1759.
  • [12]Blum MM, Lohr F, Richardt A, Ruterjans H, Chen JC: Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism. J Am Chem Soc 2006, 128:12750-12757.
  • [13]Aubert SD, Li Y, Raushel FM: Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 2004, 43:5707-5715.
  • [14]Ben-David M, Wieczorek G, Elias M, Silman I, Sussman JL, Tawfik DS: Catalytic metal ion rearrangements underline promiscuity and evolvability of a metalloenzyme. J Mol Biol 2013, 425:1028-1038.
  • [15]Tanaka Y, Morikawa K, Ohki Y, Yao M, Tsumoto K, Watanabe N, Ohta T, Tanaka I: Structural and mutational analyses of Drp35 from Staphylococcus aureus: a possible mechanism for its lactonase activity. J Biol Chem 2007, 282:5770-5780.
  • [16]Blum MM, Koglin A, Ruterjans H, Schoenborn B, Langan P, Chen JC: Preliminary time-of-flight neutron diffraction study on diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007, 63:42-45.
  • [17]Koepke J, Scharff EI, Lucke C, Ruterjans H, Fritzsch G: Statistical analysis of crystallographic data obtained from squid ganglion DFPase at 0.85 Å resolution. Acta Crystallogr D Biol Crystallogr 2003, 59:1744-1754.
  • [18]Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Zandt MV, Sibley E, Bon C, et al.: Ultrahigh resolution drug design I: Details of interactions in human aldose reductase-inhibitor complex at 0.66 Å. Proteins: Structure, Function, Bioinformatics 2004, 55:792-804.
  • [19]Liebschner D, Elias M, Moniot S, Fournier B, Scott K, Jelsch C, Guillot B, Lecomte C, Chabrière E: Elucidation of the Phosphate Binding Mode of DING Proteins Revealed by Subangstrom X-ray Crystallography. J Am Chem Soc 2009, 131:7879-7886.
  • [20]Blum M-M, Mustyakimov M, Rüterjans H, Kehe K, Schoenborn BP, Langan P, Chen JC-H: Rapid determination of hydrogen positions and protonation states of diisopropyl fluorophosphatase by joint neutron and X-ray diffraction refinement. Proc Natl Acad Sci 2009, 106:713-718.
  • [21]Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T: Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci USA 2011, 108:16247-16252.
  • [22]Elias M, Wellner A, Goldin-Azulay K, Chabriere E, Vorholt JA, Erb TJ, Tawfik DS: The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 2012, 491:134-137.
  • [23]Vrettos JS, Brudvig GW: Water oxidation chemistry of photosystem II. Philos Trans R Soc Lond B Biol Sci 2002, 357:1395-1404. discussion 1404–1395, 1419–1320
  • [24]Blum MM, Mustyakimov M, Ruterjans H, Kehe K, Schoenborn BP, Langan P, Chen JC: Rapid determination of hydrogen positions and protonation states of diisopropyl fluorophosphatase by joint neutron and X-ray diffraction refinement. Proc Natl Acad Sci U S A 2009, 106:713-718.
  • [25]Ghanem E, Raushel FM: Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol Appl Pharmacol 2005, 207:459-470.
  • [26]Melzer M, Chen JC, Heidenreich A, Gab J, Koller M, Kehe K, Blum MM: Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. J Am Chem Soc 2009, 131:17226-17232.
  • [27]Blum M-M, Chen JCH: Structural characterization of the catalytic calcium-binding site in diisopropyl fluorophosphatase (DFPase)–Comparison with related [beta]-propeller enzymes. Chem Biol Interact 2010, 187:373-379.
  • [28]Chen C-N, Chin K-H, Wang AHJ, Chou S-H: The first crystal structure of gluconolactonase important in the glucose secondary metabolic pathways. J Mol Biol 2008, 384:604-614.
  • [29]Sheldrick GM: A short history of SHELX. Acta Crystallogr A 2007, 64:112-122.
  • [30]Jelsch C, Guillot B, Lagoutte A, Lecomte C: Advances in protein and small-molecule charge density refinement methods using MoPro. J Appl Cryst 2005, 38:38-54.
  • [31]Hansen NK, Coppens P: Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 1978, 34:909-921.
  • [32]Zarychta B, Pichon-Pesme V, Guillot B, Lecomte C, Jelsch C: On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Crystallogr A 2007, 63:108-125.
  • [33]Tronrud DE: TNT refinement package. In Macromolecular Crystallography Part B. Volume 277. Edited by Jr CWC, Sweet RM. Academic Press; 1997:306-319. Methods in Enzymology http://www.sciencedirect.com/science/article/pii/S0076687997770174 webcite, http://dx.doi.org/10.1016/S0076-6879(97)77017-4 webcite
  • [34]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallographica Section D 2004, 60:2126-2132.
  • [35]Allen FH: A systematic pairwise comparison of geometric parameters obtained by X-ray and neutron diffraction. Acta Cryst B 1986, 42:515-522.
  • [36]Berman H, Henrick K, Nakamura H: Announcing the worldwide Protein Data Bank. Nat Struct Biol 2003, 10:980.
  • [37]Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D 2010, 66:213-221.
  文献评价指标  
  下载次数:122次 浏览次数:12次