期刊论文详细信息
BMC Developmental Biology
Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation
Valerie Wilson2  Andrew JH Smith2  Alexander Medvinsky2  Dawn Fisher2  Robert E Dewhurst1  Sabrina Gordon-Keylock2  Filip J. Wymeersch2  Anestis Tsakiridis2  Constantinos Economou2 
[1] Drug Discovery Unit, Telethon Kids Institute, West Perth 6872, WA, Australia;MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
关键词: Inducible expression;    Brachyury;    Nanog;    Oct4;    Pluripotency;    Extragonadal teratoma;   
Others  :  1231012
DOI  :  10.1186/s12861-015-0084-7
 received in 2015-03-20, accepted in 2015-09-18,  发布年份 2015
【 摘 要 】

Background

Pluripotent cells are present in early embryos until the levels of the pluripotency regulator Oct4 drop at the beginning of somitogenesis. Elevating Oct4 levels in explanted post-pluripotent cells in vitro restores their pluripotency. Cultured pluripotent cells can participate in normal development when introduced into host embryos up to the end of gastrulation. In contrast, pluripotent cells efficiently seed malignant teratocarcinomas in adult animals. In humans, extragonadal teratomas and teratocarcinomas are most frequently found in the sacrococcygeal region of neonates, suggesting that these tumours originate from cells in the posterior of the embryo that either reactivate or fail to switch off their pluripotent status. However, experimental models for the persistence or reactivation of pluripotency during embryonic development are lacking.

Methods

We manually injected embryonic stem cells into conceptuses at E9.5 to test whether the presence of pluripotent cells at this stage correlates with teratocarcinoma formation. We then examined the effects of reactivating embryonic Oct4 expression ubiquitously or in combination with Nanog within the primitive streak (PS)/tail bud (TB) using a transgenic mouse line and embryo chimeras carrying a PS/TB-specific heterologous gene expression cassette respectively.

Results

Here, we show that pluripotent cells seed teratomas in post-gastrulation embryos. However, at these stages, induced ubiquitous expression of Oct4 does not lead to restoration of pluripotency (indicated by Nanog expression) and tumour formation in utero, but instead causes a severe phenotype in the extending anteroposterior axis. Use of a more restricted T(Bra) promoter transgenic system enabling inducible ectopic expression of Oct4 and Nanog specifically in the posteriorly-located primitive streak (PS) and tail bud (TB) led to similar axial malformations to those induced by Oct4 alone. These cells underwent induction of pluripotency marker expression in Epiblast Stem Cell (EpiSC) explants derived from somitogenesis-stage embryos, but no teratocarcinoma formation was observed in vivo.

Conclusions

Our findings show that although pluripotent cells with teratocarcinogenic potential can be produced in vitro by the overexpression of pluripotency regulators in explanted somitogenesis-stage somatic cells, the in vivo induction of these genes does not yield tumours. This suggests a restrictive regulatory role of the embryonic microenvironment in the induction of pluripotency.

【 授权许可】

   
2015 Economou et al.

附件列表
Files Size Format View
Fig. 6. 139KB Image download
Fig. 5. 177KB Image download
Fig. 4. 67KB Image download
Fig. 3. 101KB Image download
Fig. 2. 31KB Image download
Fig. 1. 163KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009; 136(14):2311-2322.
  • [2]Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991; 113(3):891-911.
  • [3]Osorno R, Tsakiridis A, Wong F, Cambray N, Economou C, Wilkie R et al.. The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development. 2012; 139(13):2288-2298.
  • [4]Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448(7151):313-317.
  • [5]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4):663-676.
  • [6]Kleinsmith LJ, Pierce GB. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res. 1964; 24:1544-1551.
  • [7]Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer. 2005; 5(3):210-222.
  • [8]Oosterhuis JW, Stoop H, Honecker F, Looijenga LH. Why human extragonadal germ cell tumours occur in the midline of the body: old concepts, new perspectives. Int J Androl. 2007; 30(4):256-263.
  • [9]Ueno T, Tanaka YO, Nagata M, Tsunoda H, Anno I, Ishikawa S et al.. Spectrum of germ cell tumors: from head to toe. Radiographics. 2004; 24(2):387-404.
  • [10]Mintz B, Cronmiller C, Custer RP. Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci U S A. 1978; 75(6):2834-2838.
  • [11]Phillips RJ, Hulse EV. Two extragonadal teratomas in a mouse, with discussion of possible histogenesis. J Comp Pathol. 1982; 92(2):273-284.
  • [12]Stadtfeld M, Maherali N, Borkent M, Hochedlinger K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods. 2010; 7(1):53-55.
  • [13]Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I et al.. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013; 502(7471):340-345.
  • [14]Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984; 309(5965):255-256.
  • [15]Huang Y, Osorno R, Tsakiridis A, Wilson V. In Vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell rep. 2012; 2(6):1571-1578.
  • [16]Wilson V. In vitro approaches towards disruption of specific mouse genes. Ph.D . University of Cambridge, Cambridge; 1991.
  • [17]Skylaki S, Tomlinson SR. Recurrent transcriptional clusters in the genome of mouse pluripotent stem cells. Nucleic Acids Res. 2012; 40(19): Article ID e153
  • [18]Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M et al.. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996; 122(3):881-894.
  • [19]Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005; 5(5):639-646.
  • [20]Cambray N, Wilson V. Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development. 2002; 129(20):4855-4866.
  • [21]Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A et al.. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science. 2006; 314(5805):1595-1598.
  • [22]Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005; 121(3):465-477.
  • [23]Ramos-Mejia V, Escalante-Alcalde D, Kunath T, Ramirez L, Gertsenstein M, Nagy A et al.. Phenotypic analyses of mouse embryos with ubiquitous expression of Oct4: effects on mid-hindbrain patterning and gene expression. Dev Dyn. 2005; 232(1):180-190.
  • [24]Yamaguchi H, Niimi T, Kitagawa Y, Miki K. Brachyury (T) expression in embryonal carcinoma P19 cells resembles its expression in primitive streak and tail-bud but not that in notochord. Dev Growth Differ. 1999; 41(3):253-264.
  • [25]Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A. 2000; 97(14):7963-7968.
  • [26]Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N, Smithies O. Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci U S A. 1996; 93(17):9067-9072.
  • [27]Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G et al.. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development. 2003; 130(17):4217-4227.
  • [28]Schmidt C, Wilson V, Stott D, Beddington RS. T promoter activity in the absence of functional T protein during axis formation and elongation in the mouse. Dev Biol. 1997; 189(2):161-173.
  • [29]Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K et al.. Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nat Clin Pract Cardiovasc Med. 2006; 3 Suppl 1:S114-S122.
  • [30]Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R et al.. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development. 2014; 141(6):1209-1221.
  • [31]Bevis BJ, Glick BS. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol. 2002; 20(1):83-87.
  • [32]Clements D, Taylor HC, Herrmann BG, Stott D. Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mech Dev. 1996; 56(1–2):139-149.
  • [33]Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 1999; 13(24):3185-3190.
  • [34]Navarro P, Festuccia N, Colby D, Gagliardi A, Mullin NP, Zhang W et al.. OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells. EMBO J. 2012; 31(24):4547-4562.
  • [35]Isaacs H. Perinatal (fetal and neonatal) germ cell tumors. J Pediatr Surg. 2004; 39(7):1003-1013.
  • [36]Swamy R, Embleton N, Hale J. Sacrococcygeal teratoma over two decades: birth prevalence, prenatal diagnosis and clinical outcomes. Prenat Diagn. 2008; 28(11):1048-1051.
  • [37]Runyan C, Gu Y, Shoemaker A, Looijenga L, Wylie C. The distribution and behavior of extragonadal primordial germ cells in Bax mutant mice suggest a novel origin for sacrococcygeal germ cell tumors. Int J Dev Biol. 2008; 52(4):333-344.
  • [38]Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM et al.. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007; 448(7150):191-195.
  • [39]Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL et al.. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007; 448(7150):196-199.
  • [40]Rathjen PD, Nichols J, Toth S, Edwards DR, Heath JK, Smith AG. Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 1990; 4(12B):2308-2318.
  • [41]Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M et al.. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell. 2000; 5(1):35-47.
  • [42]Feijen A, Goumans MJ, van den Eijnden-van Raaij AJ. Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development. 1994; 120(12):3621-3637.
  • [43]Albano RM, Arkell R, Beddington RS, Smith JC. Expression of inhibin subunits and follistatin during postimplantation mouse development: decidual expression of activin and expression of follistatin in primitive streak, somites and hindbrain. Development. 1994; 120(4):803-813.
  • [44]Spiller CM, Feng CW, Jackson A, Gillis AJ, Rolland AD, Looijenga LH et al.. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012; 139(22):4123-4132.
  • [45]Spiller CM, Bowles J, Koopman P. Nodal/Cripto signaling in fetal male germ cell development: implications for testicular germ cell tumors. Int J Dev Biol. 2013; 57(2–4):211-219.
  • [46]Krentz AD, Murphy MW, Zhang T, Sarver AL, Jain S, Griswold MD et al.. Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Dev Biol. 2013; 377(1):67-78.
  • [47]Fustino N, Rakheja D, Ateek CS, Neumann JC, Amatruda JF. Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. Int J Androl. 2011; 34(4 Pt 2):e218-e233.
  • [48]DeVeale B, Brokhman I, Mohseni P, Babak T, Yoon C, Lin A et al.. Oct4 is required ~ E7.5 for proliferation in the primitive streak. PLoS Genet. 2013; 9(11):e1003957.
  • [49]Livigni A, Peradziryi H, Sharov AA, Chia G, Hammachi F, Migueles RP et al.. A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance. Curr Biol. 2013; 23(22):2233-2244.
  • [50]Wilson V, Beddington R. Expression of T protein in the primitive streak is necessary and sufficient for posterior mesoderm movement and somite differentiation. Dev Biol. 1997; 192(1):45-58.
  • [51]Yamaguchi H, Kitagawa Y, Miki K. Brachyury regulatory region active in embryonal carcinoma P19 cells. Biosci Biotechnol Biochem. 1999; 63(3):608-609.
  • [52]Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M et al.. Nanog safeguards pluripotency and mediates germline development. Nature. 2007; 450(7173):1230-1234.
  • [53]Wilkinson DG, Bhatt S, Herrmann BG. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature. 1990; 343(6259):657-659.
  • [54]Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. Embo J. 1990; 9(7):2185-2195.
  • [55]Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003; 17(1):126-140.
  • [56]Kaufman MH. The Atlas of Mouse Development. Elsevier Academic Press, London; 1992.
  • [57]Grosfeld JL, Billmire DF. Teratomas in infancy and childhood. Curr Probl Cancer. 1985; 9(9):1-53.
  文献评价指标  
  下载次数:80次 浏览次数:8次