期刊论文详细信息
BMC Microbiology
c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response
Elizabeth Hong-Geller1  Kirk D Rector2  Kristy L Nowak-Lovato1  Yulin Shou1  Sofiya N Micheva-Viteva1 
[1] Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA;Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
关键词: Host-pathogen interactions;    Virulence;    Signal transcription;    Host response;    Yersinia infection;    RNA interference;   
Others  :  1142772
DOI  :  10.1186/1471-2180-13-249
 received in 2013-06-27, accepted in 2013-10-31,  发布年份 2013
PDF
【 摘 要 】

Background

The pathogenic Yersinia species exhibit a primarily extracellular lifestyle through manipulation of host signaling pathways that regulate pro-inflammatory gene expression and cytokine release. To identify host genes that are targeted by Yersinia during the infection process, we performed an RNA interference (RNAi) screen based on recovery of host NF-κB-mediated gene activation in response to TNF-α stimulation upon Y. enterocolitica infection.

Results

We screened shRNAs against 782 genes in the human kinome and 26 heat shock genes, and identified 19 genes that exhibited ≥40% relative increase in NF-κB reporter gene activity. The identified genes function in multiple cellular processes including MAP and ERK signaling pathways, ion channel activity, and regulation of cell growth. Pre-treatment with small molecule inhibitors specific for the screen hits c-KIT and CKII recovered NF-κB gene activation and/or pro-inflammatory TNF-α cytokine release in multiple cell types, in response to either Y. enterocolitica or Y. pestis infection.

Conclusions

We demonstrate that pathogenic Yersinia exploits c-KIT signaling in a T3SS-dependent manner to downregulate expression of transcription factors EGR1 and RelA/p65, and pro-inflammatory cytokines. This study is the first major functional genomics RNAi screen to elucidate virulence mechanisms of a pathogen that is primarily dependent on extracellular-directed immunomodulation of host signaling pathways for suppression of host immunity.

【 授权许可】

   
2013 Micheva-Viteva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328144341926.pdf 1097KB PDF download
Figure 8. 34KB Image download
Figure 7. 39KB Image download
Figure 6. 37KB Image download
Figure 5. 67KB Image download
Figure 4. 35KB Image download
Figure 3. 54KB Image download
Figure 2. 43KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Cornelis G: Yersinia type III secretion: send in the effectors. J Cell Biol 2002, 158:401-8.
  • [2]Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson K, Wolf-Watz H: Modulation of virulence factor expression by pathogen target cell contact. Science 1996, 273:12-31. 1233
  • [3]Simonet M, Richard S, Berche P: Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid. Infect Immun 1990, 58:841-5.
  • [4]Nakajima R, Motin VL, Brubaker RR: Suppression of cytokines in mice by protein A-V antigen fusion peptide and restoration of synthesis by active immunization. Infect Immun 1995, 63:3021-9.
  • [5]Cornelis GR: The type III secretion injectisome. Nat Rev Microbiol 2006, 4:811-25.
  • [6]Straley SC, Harmon PA: Growth in mouse peritoneal macrophages of Yersinia pestis lacking established virulence determinants. Infect Immun 1984, 45:649-54.
  • [7]Pujol C, Bliska JB: The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 2003, 71:5892-9.
  • [8]Perry RD, Fetherston JD: Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev 1997, 10:35-66.
  • [9]Mittal R, Peak-Chew SY, McMahon HT: Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci U S A 2006, 103:18574-9.
  • [10]Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 2006, 312:1211-4.
  • [11]Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N: YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol 2007, 9:2700-15.
  • [12]Hannon GJ, Rossi JJ: Unlocking the potential of the human genome with RNA interference. Nature 2004, 431:371-8.
  • [13]Kuijl C, Savage ND, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJ, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff TH, Neefjes J: Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 2007, 450:725-30.
  • [14]Mishra B, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita L, Anes E: Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 2010, 12:1046-63.
  • [15]Burrack L, Harper J, Higgins D: Perturbation of vacuolar maturation promotes listerollysin O-independent vacuolar escape during Listeria monocytogenes infection of human cells. Cell Microbiol 2009, 11:1382-98.
  • [16]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319:921-6.
  • [17]Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135:49-60.
  • [18]Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008, 4:495-504.
  • [19]Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, Liang TJ, Elledge SJ: A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci U S A 2009, 106:16410-5.
  • [20]Tai AW, Benita Y, Peng LF, Kim SS, Sakamoto N, Xavier RJ, Chung RT: A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 2009, 5:298-307.
  • [21]Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF: Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 2010, 463:818-22.
  • [22]Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JA, Palese P, Shaw ML, Chanda SK: Human host factors required for influenza virus replication. Nature 2010, 463:813-7.
  • [23]Zauberman A, Cohen S, Mamroud E, Flashner Y, Tidhar A, Ber R, Elhanany E, Shafferman A, Velan B: Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis. Infect Immun 2006, 74:3239-50.
  • [24]Zhang JH, Chung TD, Oldenburg KR: A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 1999, 4:67-73.
  • [25]Edling CE, Hallberg B: c-Kit–a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 2007, 39:1995-8.
  • [26]Ishihara K, Yamagishi N, Hatayama T: Protein kinase CK2 phosphorylates Hsp105 alpha at Ser509 and modulates its function. Biochem J 2003, 371:917-25.
  • [27]Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D: Epithelial sodium channel regulated by aldosterone-induced protein Sgk. Proc Natl Acad Sci USA 1999, 96:2514-9.
  • [28]Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O: Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 2001, 20:7052-9.
  • [29]Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V: (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006, 86:1151-78.
  • [30]Son SW, Min BW, Lim Y, Lee YH, Shin SY: Regulatory mechanism of TNFalpha autoregulation in HaCaT cells: the role of the transcription factor EGR-1. Biochem Biophys Res Commun 2008, 374:777-82.
  • [31]Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, Wagner EF, Troppmair J, Mackman N, Kracht M: Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem 2008, 283:12120-8.
  • [32]Stebbins JL, De SK, Machleidt T, Becattini B, Vazquez J, Kuntzen C, Chen LH, Cellitti JF, Riel-Mehan M, Emdadi A, Solinas G, Karin M, Pellecchia M: Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc Natl Acad Sci U S A 2008, 105:16809-13.
  • [33]Huang TT, Kudo N, Yoshida M, Miyamoto S: A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci USA 2000, 97:1014-9.
  • [34]Lev S, Yarden Y, Givol D: A recombinant ectodomain of the receptor for the stem cell factor (SCF) retains ligand-induced receptor dimerization and antagonizes SCF-stimulated cellular responses. J Biol Chem 1992, 267:10866-73.
  • [35]Funasaka Y, Boulton T, Cobb M, Yarden Y, Fan B, Lyman SD, Williams DE, Anderson DM, Zakut R, Mishima Y, et al.: c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas. Mol Biol Cell 1992, 3:197-209.
  • [36]Lukaszewski RA, Kenny DJ, Taylor R, Rees DG, Hartley MG, Oyston PC: Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun 2005, 73:7142-50.
  • [37]Brodsky IE, Medzhitov R: Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog 2008, 4:e1000067.
  • [38]Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N: Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 2001, 98:1429-39.
  • [39]Yao J, Mackman N, Edgington TS, Fan ST: Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells: regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem 1997, 272:17795-801.
  • [40]Marschall JS, Wilhelm T, Schuh W, Huber M: MEK/Erk-based negative feedback mechanism involved in control of steel factor-triggered production of kruppel-like factor 2 in mast cells. Cell Signal 2012, 24:879-88.
  • [41]Ma J, Ren Z, Ma Y, Xu L, Zhao Y, Zheng C, Fang Y, Xue T, Sun B, Xiao W: Targeted knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated invasion of prostate cancer cells through suppressing EGR-1/NF-kappaB synergy. J Biol Chem 2009, 284:34600-6.
  • [42]Sauvonnet N, Lambermont I, van der Bruggen P, Cornelis GR: YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositol 3-kinase pathway. Mol Microbiol 2002, 45:805-15.
  • [43]Orth K, Palmer LE, Bao ZQ, Stewart S, Rudolph AE, Bliska JB, Dixon JE: Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 1999, 285:1920-3.
  • [44]Hambleton J, Weinstein SL, Lem L, DeFranco AL: Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 1996, 93:2774-8.
  • [45]Dobrovolskaia MA, Vogel SN: Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 2002, 4:903-14.
  • [46]Rosenberger CM, Brumell JH, Finlay BB: Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 2000, 10:R823-5.
  • [47]Lafont F, Abrami L, van der Goot FG: Bacterial subversion of lipid rafts. Curr Opin Microbiol 2004, 7:4-10.
  • [48]McElroy SJ, Hobbs S, Kallen M, Tejera N, Rosen MJ, Grishin A, Matta P, Schneider C, Upperman J, Ford H, Polk DB, Weitkamp JH: Transactivation of EGFR by LPS induces COX-2 expression in enterocytes. PLoS One 2012, 7:e38373.
  • [49]Neyt C, Cornelis GR: Insertion of a yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol 1999, 33:971-81.
  • [50]Bell LM, Leong ML, Kim B, Wang E, Park J, Hemmings BA, Firestone GL: Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) by a p38 MAPK-dependent pathway. J Biol Chem 2000, 275:25262-72.
  • [51]Zagorska A, Pozo-Guisado E, Boudeau J, Vitari AC, Rafiqi FH, Thastrup J, Deak M, Campbell DG, Morrice NA, Prescott AR, Alessi DR: Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J Cell Biol 2007, 176:89-100.
  • [52]Cheng CJ, Huang CL: Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1. J Am Soc Nephrol 2011, 22:460-71.
  • [53]Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH: WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci USA 2005, 102:10315-20.
  • [54]Xu BE, Stippec S, Lenertz L, Lee BH, Zhang W, Lee YK, Cobb MH: WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J Biol Chem 2004, 279:7826-31.
  • [55]Ellinger-Ziegelbauer H, Brown K, Kelly K, Siebenlist U: Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein kinase/ERK kinase kinase 3 (MEKK) derivative. J Biol Chem 1997, 272:2668-74.
  • [56]Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Liu Z, Su B: The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2001, 2:620-4.
  • [57]Sun W, Li H, Yu Y, Fan Y, Grabiner BC, Mao R, Ge N, Zhang H, Fu S, Lin X, Yang J: MEKK3 is required for lysophosphatidic acid-induced NF-kappaB activation. Cell Signal 2009, 21:1488-94.
  • [58]Barroga CF, Stevenson JK, Schwarz EM, Verma IM: Constitutive phosphorylation of I kappa B alpha by casein kinase II. Proc Natl Acad Sci USA 1995, 92:7637-41.
  • [59]Lin R, Beauparlant P, Makris C, Meloche S, Hiscott J: Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol Cell Biol 1996, 16:1401-9.
  • [60]Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr: Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000, 275:32592-7.
  • [61]Razani B, Reichardt AD, Cheng G: Non-canonical NF-kappaB signaling activation and regulation: principles and perspectives. Immunol Rev 2011, 244:44-54.
  • [62]Jiwani S, Wang Y, Dowd GC, Gianfelice A, Pichestapong P, Gavicherla B, Vanbennekom N, Ireton K: Identification of components of the host type IA phosphoinositide 3-kinase pathway that promote internalization of Listeria monocytogenes. Infect Immun 2012, 80:1252-66.
  • [63]Cowan C, Jones HA, Kaya YH, Perry RD, Straley SC: Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun 2000, 68:4523-30.
  文献评价指标  
  下载次数:82次 浏览次数:13次