期刊论文详细信息
BMC Genomics
Identification of a lineage specific zinc responsive genomic island in Mycobacterium avium ssp. paratuberculosis
Ralph Goethe3  Jochen Meens3  Cornelia Frömke2  Michael Jarek1  Elke Eckelt3 
[1] Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany;Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Hannover, Germany;Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
关键词: Metalloregulator;    Mycobacteria;    Regulation;    Zur;    FurB;    Zinc homeostasis;   
Others  :  1127478
DOI  :  10.1186/1471-2164-15-1076
 received in 2014-08-29, accepted in 2014-11-24,  发布年份 2014
PDF
【 摘 要 】

Background

Maintenance of metal homeostasis is crucial in bacterial pathogenicity as metal starvation is the most important mechanism in the nutritional immunity strategy of host cells. Thus, pathogenic bacteria have evolved sensitive metal scavenging systems to overcome this particular host defence mechanism. The ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) displays a unique gut tropism and causes a chronic progressive intestinal inflammation. MAP possesses eight conserved lineage specific large sequence polymorphisms (LSP), which distinguish MAP from its ancestral M. avium ssp. hominissuis or other M. avium subspecies. LSP14 and LSP15 harbour many genes proposed to be involved in metal homeostasis and have been suggested to substitute for a MAP specific, impaired mycobactin synthesis.

Results

In the present study, we found that a LSP14 located putative IrtAB-like iron transporter encoded by mptABC was induced by zinc but not by iron starvation. Heterologous reporter gene assays with the lacZ gene under control of the mptABC promoter in M. smegmatis (MSMEG) and in a MSMEG∆furB deletion mutant revealed a zinc dependent, metalloregulator FurB mediated expression of mptABC via a conserved mycobacterial FurB recognition site. Deep sequencing of RNA from MAP cultures treated with the zinc chelator TPEN revealed that 70 genes responded to zinc limitation. Remarkably, 45 of these genes were located on a large genomic island of approximately 90 kb which harboured LSP14 and LSP15. Thirty-five of these genes were predicted to be controlled by FurB, due to the presence of putative binding sites. This clustering of zinc responsive genes was exclusively found in MAP and not in other mycobacteria.

Conclusions

Our data revealed a particular genomic signature for MAP given by a unique zinc specific locus, thereby suggesting an exceptional relevance of zinc for the metabolism of MAP. MAP seems to be well adapted to maintain zinc homeostasis which might contribute to the peculiarity of MAP pathogenicity.

【 授权许可】

   
2014 Eckelt et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220190134842.pdf 1160KB PDF download
Figure 4. 55KB Image download
Figure 3. 66KB Image download
Figure 2. 77KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hood MI, Skaar EP: Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012, 10:525-537.
  • [2]Rodriguez GM: Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 2006, 14:320-327.
  • [3]Jones CM, Niederweis M: Role of porins in iron uptake by Mycobacterium smegmatis. J Bacteriol 2010, 192:6411-6417.
  • [4]Riccardi G, Milano A, Pasca MR, Nies DH: Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett 2008, 287:1-7.
  • [5]Schmitt MP, Predich M, Doukhan L, Smith I, Holmes RK: Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect Immun 1995, 63:4284-4289.
  • [6]Rodriguez GM, Smith I: Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 2006, 188:424-430.
  • [7]Janagama HK, Kumar S, Bannantine JP, Kugadas A, Jagtap P, Higgins L, Witthuhn BA, Sreevatsan S: Iron-sparing Response of Mycobacterium avium subsp. paratuberculosis is strain dependent. BMC Microbiol 2010, 10:268. BioMed Central Full Text
  • [8]Hill PJ, Cockayne A, Landers P, Morrissey JA, Sims CM, Williams P: SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 1998, 66:4123-4129.
  • [9]Osman D, Cavet JS: Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. Nat Prod Rep 2010, 27:668-680.
  • [10]Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palù G, Riccardi G, Manganelli R: Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 2007, 189:730-740.
  • [11]Lee JW, Helmann JD: Functional specialization within the Fur family of metalloregulators. Biometals 2007, 20:485-499.
  • [12]Fillat MF: The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014, 546C:41-52.
  • [13]van Coppenraet LE B, de Haas PE, Lindeboom JA, Kuijper EJ, van Soolingen D: Lymphadenitis in children is caused by Mycobacterium avium hominissuis and not related to 'bird tuberculosis'. Eur J Clin Microbiol Infect Dis 2008, 27:293-299.
  • [14]Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA: Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl Environ Microbiol 2004, 70:2989-3004.
  • [15]Clarke CJ: The pathology and pathogenesis of paratuberculosis in ruminants and other species. J Comp Pathol 1997, 116:217-261.
  • [16]Weigoldt M, Meens J, Doll K, Fritsch I, Mobius P, Goethe R, Gerlach GF: Differential proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and isolated from cases of clinical Johne's disease. Microbiology 2011, 157:557-565.
  • [17]Weigoldt M, Meens J, Bange FC, Pich A, Gerlach GF, Goethe R: Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut environment. Microbiology 2013, 159:380-391.
  • [18]Alexander DC, Turenne CY, Behr MA: Insertion and deletion events that define the pathogen Mycobacterium avium subsp. paratuberculosis. J Bacteriol 2009, 191:1018-1025.
  • [19]Meissner T, Eckelt E, Basler T, Meens J, Heinzmann J, Suwandi A, Oelemann WMR, Trenkamp S, Holst O, Weiss S, Bunk B, Sproeer C, Gerlach GF, Goethe R: The Mycobacterium avium ssp. paratuberculosis specific mptD gene is required for maintaince of the metabolic homeostasis necessary for full virulence in mouse infections. Frontiers Cell Infect Microbiol 2014, 4:110.
  • [20]Wang J, Pritchard JR, Kreitmann L, Montpetit A, Behr MA: Disruption of Mycobacterium avium subsp. paratuberculosis-specific genes impairs in vivo fitness. BMC Genomics 2014, 15:415. BioMed Central Full Text
  • [21]Kuehnel MP, Goethe R, Habermann A, Mueller E, Rohde M, Griffiths G, Valentin-Weigand P: Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol 2001, 3:551-566.
  • [22]Basler T, Holtmann H, Abel J, Eckstein T, Baumer W, Valentin-Weigand P, Goethe R: Reduced transcript stabilization restricts TNF-alpha expression in RAW264.7 macrophages infected with pathogenic mycobacteria: evidence for an involvement of lipomannan. J Leukoc Biol 2010, 87:173-183.
  • [23]Zur Lage S, Goethe R, Darji A, Valentin-Weigand P, Weiss S: Activation of macrophages and interference with CD4+ T-cell stimulation by Mycobacterium avium subspecies paratuberculosis and Mycobacterium avium subspecies avium. Immunology 2003, 108:62-69.
  • [24]Stabel JR: Host responses to Mycobacterium avium subsp. paratuberculosis: a complex arsenal. Anim Health Res Rev 2006, 7:61-70.
  • [25]Kehl-Fie TE, Skaar EP: Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 2010, 14:218-224.
  • [26]Neyrolles O, Mintz E, Catty P: Zinc and copper toxicity in host defense against pathogens: Mycobacterium tuberculosis as a model example of an emerging paradigm. Front Cell Infect Microbiol 2013, 3:89.
  • [27]Botella H, Stadthagen G, Lugo-Villarino G, de Chastellier C, Neyrolles O: Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol 2012, 20:106-112.
  • [28]Cassat JE, Skaar EP: Iron in infection and immunity. Cell Host Microbe 2013, 13:509-519.
  • [29]Collins HL: Withholding iron as a cellular defence mechanism–friend or foe? Eur J Immunol 2008, 38:1803-1806.
  • [30]Dussurget O, Rodriguez M, Smith I: An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol Microbiol 1996, 22:535-544.
  • [31]Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ, Alt D, Banerji N, Kanjilal S, Kapur V: The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 2005, 102:12344-12349.
  • [32]Stratmann J, Strommenger B, Goethe R, Dohmann K, Gerlach GF, Stevenson K, Li L, Zhang Q, Kapur V, Bull T: A 38-kilobase pathogenicity island specific for Mycobacterium avium subsp paratuberculosis encodes cell surface proteins expressed in the host. Infect Immun 2004, 72:1265-1274.
  • [33]Lamont EA, Xu WW, Sreevatsan S: Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013, 14:694. BioMed Central Full Text
  • [34]Yellaboina S, Ranjan S, Vindal V, Ranjan A: Comparative analysis of iron regulated genes in mycobacteria. FEBS Lett 2006, 580:2567-2576.
  • [35]Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I: ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 2002, 70:3371-3381.
  • [36]Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I: The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 2001, 42:851-865.
  • [37]Winterhoff N, Goethe R, Gruening P, Valentin-Weigand P: Response of Streptococcus suis to iron-restricted growth conditions at high and low oxygen availability. Berl Munch Tierarztl Wochenschr 2004, 117:266-270.
  • [38]Heinzmann J, Wilkens M, Dohmann K, Gerlach GF: Mycobacterium avium subsp. paratuberculosis-specific mpt operon expressed in M. bovis BCG as vaccine candidate. Vet Microbiol 2008, 130:330-337.
  • [39]Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E: Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 2007, 282:9914-9922.
  • [40]Ryndak MB, Wang S, Smith I, Rodriguez GM: The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J Bacteriol 2010, 192:861-869.
  • [41]Teramoto H, Inui M, Yukawa H: Corynebacterium glutamicum Zur acts as a zinc-sensing transcriptional repressor of both zinc-inducible and zinc-repressible genes involved in zinc homeostasis. FEBS J 2012, 279:4385-4397.
  • [42]Patzer SI, Hantke K: The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 2000, 275:24321-24332.
  • [43]Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, Crecy-Lagard V: A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 2009, 10:470. BioMed Central Full Text
  • [44]Abdallah AM, Verboom T, Weerdenburg EM, van Pittius NC G, Mahasha PW, Jimenez C, Parra M, Cadieux N, Brennan MJ, Appelmelk BJ, Bitter W: PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 2009, 73:329-340.
  • [45]Serafini A, Pisu D, Palu G, Rodriguez GM, Manganelli R: The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS ONE 2013, 8:e78351.
  • [46]Abdallah AM, Savage ND, van Zon M, Wilson L, Vandenbroucke-Grauls CM, van der Wel NN, Ottenhoff THM, Bitter W: The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J Immunol 2008, 181:7166-7175.
  • [47]Shin JH, Oh SY, Kim SJ, Roe JH: The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 2007, 189:4070-4077.
  • [48]Gabriel SE, Helmann JD: Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J Bacteriol 2009, 191:6116-6122.
  • [49]Schroder J, Jochmann N, Rodionov DA, Tauch A: The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 2010, 11:12. BioMed Central Full Text
  • [50]Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT: The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5. Environ Microbiol 2013, 15:702-715.
  • [51]Patzer SI, Hantke K: The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 1998, 28:1199-1210.
  • [52]Lee SM, Grass G, Haney CJ, Fan B, Rosen BP, Anton A, Nies DH, Rensing C: Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol Lett 2002, 215:273-278.
  • [53]Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A: High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 2007, 75:5867-5876.
  • [54]Davis LM, Kakuda T, DiRita VJ: A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 2009, 191:1631-1640.
  • [55]Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, Chazin WJ, Caprioli RM, Skaar EP: Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog 2012, 8:e1003068.
  • [56]Liu JZ, Jellbauer S, Poe AJ, Ton V, Pesciaroli M, Kehl-Fie TE, Restrepo NA, Hosking M, Edwards RA, Battistoni A, Pasquali P, Lane TE, Chazin WJ, Vogl T, Roth J, Skaar EP, Raffatellu M: Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 2012, 11:227-239.
  • [57]Sambrook J, Russell DW: Preparation and Transformation of Competent E. coli Using Calcium Chloride. 2006.
  • [58]Parish T, Stoker NG: Electroporation of mycobacteria. Methods Mol Biol 1998, 101:129-144.
  • [59]Rustad TR, Roberts DM, Liao RP, Sherman DR: Isolation of mycobacterial RNA. Methods Mol Biol 2009, 465:13-21.
  • [60]Ramachandran L, Burhans DT, Laun P, Wang J, Liang P, Weinberger M, Wissing S, Jarolim S, Suter B, Madeo F, Breitenbach M, Burhans WC: Evidence for ORC-dependent repression of budding yeast genes induced by starvation and other stresses. FEMS Yeast Res 2006, 6:763-776.
  • [61]SAS Institute Inc: SAS® 9.3 In-Database Products: User’s Guide. 4th edition. Cary, NC, USA: SAS Institute Inc; 2012.
  • [62]Parish T, Stoker NG: Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 2000, 146(Pt 8):1969-1975.
  • [63]Timm J, Lim EM, Gicquel B: Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM. J Bacteriol 1994, 176:6749-6753.
  文献评价指标  
  下载次数:17次 浏览次数:16次