期刊论文详细信息
BMC Gastroenterology
Guanylate cyclase C limits systemic dissemination of a murine enteric pathogen
Kris A Steinbrecher1  Mitchell B Cohen1  Eleana Harmel-Laws1  Elizabeth A Mann1 
[1] Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 2010, 45229 Cincinnati, OH, USA
关键词: Intestinal barrier function;    Epithelial cell apoptosis;    Attaching and effacing lesion;    Colon;    Intestine;    cGMP;    Guanylyl cyclase;    Guanylate cyclase;   
Others  :  857626
DOI  :  10.1186/1471-230X-13-135
 received in 2013-05-17, accepted in 2013-08-21,  发布年份 2013
PDF
【 摘 要 】

Background

Guanylate Cyclase C (GC-C) is an apically-oriented transmembrane receptor that is expressed on epithelial cells of the intestine. Activation of GC-C by the endogenous ligands guanylin or uroguanylin elevates intracellular cGMP and is implicated in intestinal ion secretion, cell proliferation, apoptosis, intestinal barrier function, as well as the susceptibility of the intestine to inflammation. Our aim was to determine if GC-C is required for host defense during infection by the murine enteric pathogen Citrobacter rodentium of the family Enterobacteriacea.

Methods

GC-C+/+ control mice or those having GC-C genetically ablated (GC-C−/−) were administered C. rodentium by orogastric gavage and analyzed at multiple time points up to post-infection day 20. Commensal bacteria were characterized in uninfected GC-C+/+ and GC-C−/− mice using 16S rRNA PCR analysis.

Results

GC-C−/− mice had an increase in C. rodentium bacterial load in stool relative to GC-C+/+. C. rodentium infection strongly decreased guanylin expression in GC-C+/+ mice and, to an even greater degree, in GC-C−/− animals. Fluorescent tracer studies indicated that mice lacking GC-C, unlike GC-C+/+ animals, had a substantial loss of intestinal barrier function early in the course of infection. Epithelial cell apoptosis was significantly increased in GC-C−/− mice following 10 days of infection and this was associated with increased frequency and numbers of C. rodentium translocation out of the intestine. Infection led to significant liver histopathology in GC-C−/− mice as well as lymphocyte infiltration and elevated cytokine and chemokine expression. Relative to naïve GC-C+/+ mice, the commensal microflora load in uninfected GC-C−/− mice was decreased and bacterial composition was imbalanced and included outgrowth of the Enterobacteriacea family.

Conclusions

This work demonstrates the novel finding that GC-C signaling is an essential component of host defense during murine enteric infection by reducing bacterial load and preventing systemic dissemination of attaching/effacing-lesion forming bacterial pathogens such as C. rodentium.

【 授权许可】

   
2013 Mann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723082944955.pdf 2635KB PDF download
31KB Image download
60KB Image download
140KB Image download
188KB Image download
111KB Image download
130KB Image download
47KB Image download
73KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S: Citrobacter rodentium of mice and man. Cell Microbiol 2005, 7(12):1697-1706.
  • [2]Borenshtein D, Schlieper KA, Rickman BH, Chapman JM, Schweinfest CW, Fox JG, Schauer DB: Decreased expression of colonic Slc26a3 and carbonic anhydrase IV as a cause of fatal infectious diarrhea in mice. Infect Immun 2009, 77(9):3639-3650.
  • [3]Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, Ma C, Halder S, Montero M, Ionescu VA, et al.: Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 2011, 301(1):G39-G49.
  • [4]Willing BP, Vacharaksa A, Croxen M, Thanachayanont T, Finlay BB: Altering host resistance to infections through microbial transplantation. PLoS One 2011, 6(10):e26988.
  • [5]Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE: Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 1992, 89(3):947-951.
  • [6]Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, et al.: Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 1993, 90(22):10464-10468.
  • [7]Chao AC, de Sauvage FJ, Dong YJ, Wagner JA, Goeddel DV, Gardner P: Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 1994, 13(5):1065-1072.
  • [8]Seidler U, Blumenstein I, Kretz A, Viellard-Baron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M: A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca(2+)-dependent HCO3- secretion. J Physiol 1997, 505(Pt 2):411-423.
  • [9]Cha B, Kim JH, Hut H, Hogema BM, Nadarja J, Zizak M, Cavet M, Lee-Kwon W, Lohmann SM, Smolenski A, et al.: CGMP inhibition of Na+/H + antiporter 3 (NHE3) requires PDZ domain adapter NHERF2, a broad specificity protein kinase G-anchoring protein. J Biol Chem 2005, 280(17):16642-16650.
  • [10]Schulz S, Green CK, Yuen PS, Garbers DL: Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 1990, 63(5):941-948.
  • [11]Mann EA, Jump ML, Wu J, Yee E, Giannella RA: Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 1997, 239(2):463-466.
  • [12]Schulz S, Lopez MJ, Kuhn M, Garbers DL: Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest 1997, 100(6):1590-1595.
  • [13]Li P, Lin JE, Chervoneva I, Schulz S, Waldman SA, Pitari GM: Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. Am J Pathol 2007, 171(6):1847-1858.
  • [14]Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA: Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci USA 2001, 98(14):7846-7851.
  • [15]Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, et al.: Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 2000, 60(18):5151-5157.
  • [16]Han X, Mann E, Gilbert S, Guan Y, Steinbrecher KA, Montrose MH, Cohen MB: Loss of guanylyl cyclase C (GCC) signaling leads to dysfunctional intestinal barrier. PLoS ONE 2011, 6(1):e16139.
  • [17]Garin-Laflam MP, Steinbrecher KA, Rudolph JA, Mao J, Cohen MB: Activation of guanylate cyclase C signaling pathway protects intestinal epithelial cells from acute radiation-induced apoptosis. Am J Physiol Gastrointest Liver Physiol 2009, 296(4):G740-G749.
  • [18]Steinbrecher KA, Harmel-Laws E, Garin-Laflam MP, Mann EA, Bezerra LD, Hogan SP, Cohen MB: Murine guanylate cyclase C regulates colonic injury and inflammation. J Immunol 2011, 186(12):7205-7214.
  • [19]Steinbrecher KA, Harmel-Laws E, Sitcheran R, Baldwin AS: Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation. J Immunol 2008, 180(4):2588-2599.
  • [20]Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D: Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 1996, 98(4):1010-1020.
  • [21]Schultz M, Tonkonogy SL, Sellon RK, Veltkamp C, Godfrey VL, Kwon J, Grenther WB, Balish E, Horak I, Sartor RB: IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 1999, 276(6 Pt 1):G1461-G1472.
  • [22]Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, et al.: Muc2 Protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010, 6(5):e1000902.
  • [23]Steinbrecher KA, Horowitz NA, Blevins EA, Barney KA, Shaw MA, Harmel-Laws E, Finkelman FD, Flick MJ, Pinkerton MD, Talmage KE, et al.: Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 2010, 70(7):2634-2643.
  • [24]Mann EA, Shanmukhappa K, Cohen MB: Lack of guanylate cyclase C results in increased mortality in mice following liver injury. BMC Gastroenterol 2010, 10:86. BioMed Central Full Text
  • [25]Walker NM, Simpson JE, Yen PF, Gill RK, Rigsby EV, Brazill JM, Dudeja PK, Schweinfest CW, Clarke LL: Down-regulated in adenoma Cl/HCO3 exchanger couples with Na/H exchanger 3 for NaCl absorption in murine small intestine. Gastroenterology 2008, 135(5):1645-1653. e1643
  • [26]Wei L, Simen A, Mane S, Kaffman A: Early life stress inhibits expression of a novel innate immune pathway in the developing hippocampus. Neuropsychopharmacology 2012, 37(2):567-580.
  • [27]Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, Salzman N: Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun 2008, 76(3):907-915.
  • [28]Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A: Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 2004, 97(6):1166-1177.
  • [29]Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al.: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139(3):485-498.
  • [30]Maaser C, Housley MP, Iimura M, Smith JR, Vallance BA, Finlay BB, Schreiber JR, Varki NM, Kagnoff MF, Eckmann L: Clearance of citrobacter rodentium requires B cells but not secretory immunoglobulin a (IgA) or IgM antibodies. Infect Immun 2004, 72(6):3315-3324.
  • [31]Spehlmann ME, Dann SM, Hruz P, Hanson E, McCole DF, Eckmann L: CXCR2-Dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. J Immunol 2009, 183(5):3332-3343.
  • [32]Borenshtein D, Fry RC, Groff EB, Nambiar PR, Carey VJ, Fox JG, Schauer DB: Diarrhea as a cause of mortality in a mouse model of infectious colitis. Genome Biol 2008, 9(8):R122. BioMed Central Full Text
  • [33]Umar S, Scott J, Sellin JH, Dubinsky WP, Morris AP: Murine colonic mucosa hyperproliferation. I. Elevated CFTR expression and enhanced cAMP-dependent Cl(−) secretion. Am J Physiol Gastrointest Liver Physiol 2000, 278(5):G753-G764.
  • [34]Wine E, Shen-Tu G, Gareau MG, Goldberg HA, Licht C, Ngan BY, Sorensen ES, Greenaway J, Sodek J, Zohar R, et al.: Osteopontin mediates citrobacter rodentium-induced colonic epithelial cell hyperplasia and attaching-effacing lesions. Am J Pathol 2010, 177(3):1320-1332.
  • [35]Steinbrecher KA, Wowk SA, Rudolph JA, Witte DP, Cohen MB: Targeted inactivation of the mouse guanylin gene results in altered dynamics of colonic epithelial proliferation. Am J Pathol 2002, 161(6):2169-2178.
  • [36]Lin JE, Snook AE, Li P, Stoecker BA, Kim GW, Magee MS, Garcia AV, Valentino MA, Hyslop T, Schulz S, et al.: GUCY2C Opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity. PLoS One 2012, 7(2):e31686.
  • [37]Guttman JA, Li Y, Wickham ME, Deng W, Vogl AW, Finlay BB: Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol 2006, 8(4):634-645.
  • [38]Conlin VS, Wu X, Nguyen C, Dai C, Vallance BA, Buchan AM, Boyer L, Jacobson K: Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2009, 297(4):G735-G750.
  • [39]Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, et al.: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008, 14(3):282-289.
  • [40]Raczynski AR, Muthupalani S, Schlieper K, Fox JG, Tannenbaum SR, Schauer DB: Enteric infection with citrobacter rodentium induces coagulative liver necrosis and hepatic inflammation prior to peak infection and colonic disease. PLoS One 2012, 7(3):e33099.
  • [41]De Lisle RC: Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2007, 293(1):G104-G111.
  • [42]Laubitz D, Larmonier CB, Bai A, Midura-Kiela MT, Lipko MA, Thurston RD, Kiela PR, Ghishan FK: Colonic gene expression profile in NHE3-deficient mice: evidence for spontaneous distal colitis. Am J Physiol Gastrointest Liver Physiol 2008, 295(1):G63-G77.
  • [43]Norkina O, Burnett TG, De Lisle RC: Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect Immun 2004, 72(10):6040-6049.
  • [44]Keely S, Kelly C, Weissmueller T, Burgess A, Wagner B, Robertson CE, Harris JK, Colgan SP: Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome. Gut Microbes 2012, 3(3):250-260.
  • [45]Steinbrecher KA, Cohen MB: Transmembrane guanylate cyclase in intestinal pathophysiology. Curr Opin Gastroenterol 2011, 27(2):139-145.
  • [46]Ma C, Wickham ME, Guttman JA, Deng W, Walker J, Madsen KL, Jacobson K, Vogl WA, Finlay BB, Vallance BA: Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell Microbiol 2006, 8(10):1669-1686.
  • [47]Holmes A, Muhlen S, Roe AJ, Dean P: The EspF effector, a bacterial pathogen's swiss army knife. Infect Immun 2010, 78(11):4445-4453.
  • [48]Vallance BA, Deng W, Jacobson K, Finlay BB: Host susceptibility to the attaching and effacing bacterial pathogen citrobacter rodentium. Infect Immun 2003, 71(6):3443-3453.
  • [49]Stecher B, Hardt WD: Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 2011, 14(1):82-91.
  • [50]Gareau MG, Wine E, Reardon C, Sherman PM: Probiotics prevent death caused by citrobacter rodentium infection in neonatal mice. J Infect Dis 2010, 201(1):81-91.
  • [51]Bailey MT, Dowd SE, Parry NMA, Galley JD, Schauer DB, Lyte M: Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by citrobacter rodentium. Infect Immun 2010, 78(4):1509-1519.
  • [52]Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, von Mering C, et al.: Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 2010, 6(1):e1000711.
  • [53]Friswell MK, Gika H, Stratford IJ, Theodoridis G, Telfer B, Wilson ID, McBain AJ: Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 2010, 5(1):e8584.
  • [54]Gill N, Finlay BB: The gut microbiota: challenging immunology. Nat Rev Immunol 2011, 11(10):636-637.
  • [55]Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I, Equinda M, Khanin R, Pamer EG: Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 2012, 209(8):1445-1456.
  文献评价指标  
  下载次数:71次 浏览次数:14次