期刊论文详细信息
BMC Cancer
Genetic oxidative stress variants and glioma risk in a Chinese population: a hospital-based case–control study
Tao Jiang1  Yongping You2  Zhen Fu2  Chunsheng Kang3  Wei Yan1  Ning Liu2  Ailin Lu2  Peng Zou2  Lin Zhao2  Peng Zhao2 
[1]Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, 100050, China
[2]Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
[3]Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
关键词: NOS1;    GPX1;    SOD3;    SOD2;    Glioma;    Single nucleotide polymorphism;    Oxidative stress;   
Others  :  1127644
DOI  :  10.1186/1471-2407-12-617
 received in 2012-06-17, accepted in 2012-12-18,  发布年份 2012
PDF
【 摘 要 】

Background

The oxidative stress mechanism is of particular interest in the pathogenesis of glioma, given the high rate of oxygen metabolism in the brain. Potential links between polymorphisms of antioxidant genes and glioma risk are currently unknown. We therefore investigated the association between polymorphisms in antioxidant genes and glioma risk.

Methods

We examined 16 single nucleotide polymorphisms (SNPs) of 9 antioxidant genes (GPX1, CAT, PON1, NQO1, SOD2/MnSOD, SOD3, and NOS1*2*3) in 384 glioma and 384 control cases in a Chinese hospital-based case–control study. Genotypes were determined using the OpenArray platform, which employs the chip-based Taq-Man genotyping technology. The adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated using unconditional logistic regression.

Results

Using single-locus analysis, we identified four SNPs (SOD2 V16A, SOD3 T58A, GPX1 -46 C/T, and NOS1 3’-UTR) that were significantly associated with the risk of glioma development. To assess the cumulative effects, we performed a combined unfavourable genotype analysis. Compared with the reference group that exhibited no unfavourable genotypes, the medium- and high-risk groups exhibited a 1.86-fold (95% CI, 1.30-2.67) and a 4.86-fold (95% CI, 1.33-17.71) increased risk of glioma, respectively (P-value for the trend < 0.001).

Conclusions

These data suggest that genetic variations in oxidative stress genes might contribute to the aetiology of glioma.

【 授权许可】

   
2012 Zhao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150221025520633.pdf 218KB PDF download
【 参考文献 】
  • [1]Ohgaki H, Kleihues P: Epidemiology and etiology of gliomas. Acta Neuropathol 2005, 109(1):93-108.
  • [2]Ostrom QT, Barnholtz-Sloan JS: Current state of our knowledge on brain tumor epidemiology. Curr Neurol Neurosci Rep 2011, 11(3):329-335.
  • [3]Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010, 60(3):166-193.
  • [4]Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005, 55(2):74-108.
  • [5]Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al.: An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321(5897):1807-1812.
  • [6]Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455(7216):1061-1068.
  • [7]Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J, Gudbjartsson DF, Magnusson OT, Gudjonsson SA, Sigurgeirsson B, Thorisdottir K, et al.: A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet 2011, 43(11):1098-1103.
  • [8]Lachance DH, Yang P, Johnson DR, Decker PA, Kollmeyer TM, McCoy LS, Rice T, Xiao Y, Ali-Osman F, Wang F, et al.: Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking. Am J Epidemiol 2011, 174(5):574-581.
  • [9]Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y, Enciso-Mora V, Idbaih A, Delattre JY, Hoang-Xuan K, et al.: Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet 2011, 20(14):2897-2904.
  • [10]Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M: Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev 2010, 20(3):239-244.
  • [11]Halliwell B: Oxidative stress and neurodegeneration: where are we now? J Neurochem 2006, 97(6):1634-1658.
  • [12]Miao L, St Clair DK: Regulation of superoxide dismutase genes: Implications in disease. Free Radical Bio Med 2009, 47(4):344-356.
  • [13]Zelko IN, Mariani TJ, Folz RJ: Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Bio Med 2002, 33(3):337-349.
  • [14]Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 2007, 39(1):44-84.
  • [15]Culotta VC, Yang M, O'Halloran TV: Activation of superoxide dismutases: Putting the metal to the pedal. Bba-Mol Cell Res 2006, 1763(7):747-758.
  • [16]Kang D, Lee KM, Park SK, Berndt SI, Peters U, Reding D, Chatterjee N, Welch R, Chanock S, Huang WY, et al.: Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol Biomarkers Prev 2007, 16(8):1581-1586.
  • [17]Meplan C, Hughes DJ, Pardini B, Naccarati A, Soucek P, Vodickova L, Hlavata I, Vrana D, Vodicka P, Hesketh JE: Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis 2010, 31(6):1074-1079.
  • [18]Cerne JZ, Novakovic S, Frkovic-Grazio S, Pohar-Perme M, Stegel V, Gersak K: Estrogen metabolism genotypes, use of long-term hormone replacement therapy and risk of postmenopausal breast cancer. Oncol Rep 2011, 26(2):479-485.
  • [19]Kim MK, Ahn SH, Son BH, Sung MK: Plasma antioxidant concentration, not superoxide dismutase polymorphism, is associated with breast cancer risk in Korean women. Nutr Res 2010, 30(10):705-713.
  • [20]Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Wu K, Erdman JJ, Giovannucci E: Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk. Carcinogenesis 2008, 29(12):2335-2340.
  • [21]Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, et al.: Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 2009, 41(8):899-904.
  • [22]Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, et al.: Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 2009, 41(8):905-908.
  • [23]Song X, Zhou K, Zhao Y, Huai C, Zhao Y, Yu H, Chen Y, Chen G, Chen H, Fan W, et al.: Fine mapping analysis of a region of 20q13.33 identified five independent susceptibility loci for glioma in a Chinese Han population. Carcinogenesis 2012, 33(5):1065-1071.
  • [24]Ibarrola-Villava M, Pena-Chilet M, Fernandez LP, Aviles JA, Mayor M, Martin-Gonzalez M, Gomez-Fernandez C, Casado B, Lazaro P, Lluch A, et al.: Genetic polymorphisms in DNA repair and oxidative stress pathways associated with malignant melanoma susceptibility. Eur J Cancer 2011, 47(17):2618-2625.
  • [25]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Statistical Methodology 1995, 57(1):289-300.
  • [26]Klaunig JE, Kamendulis LM, Hocevar BA: Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010, 38(1):96-109.
  • [27]Klaunig JE, Wang Z, Pu X, Zhou S: Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 2011, 254(2):86-99.
  • [28]Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006, 160(1):1-40.
  • [29]Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J: Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004, 266(1–2):37-56.
  • [30]Rajaraman P, Hutchinson A, Rothman N, Black PM, Fine HA, Loeffler JS, Selker RG, Shapiro WR, Linet MS, Inskip PD: Oxidative response gene polymorphisms and risk of adult brain tumors. Neuro Oncol 2008, 10(5):709-715.
  • [31]Hubackova M, Vaclavikova R, Ehrlichova M, Mrhalova M, Kodet R, Kubackova K, Vrana D, Gut I, Soucek P: Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int J Cancer 2012, 130(2):338-348.
  • [32]Hurt EM, Thomas SB, Peng B, Farrar WL: Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines. Brit J Cancer 2007, 97(8):1116-1123.
  • [33]Hermann B, Li Y, Ray MB, Wo JM, Martin RN: Association of manganese superoxide dismutase expression with progression of carcinogenesis in Barrett esophagus. Arch Surg 2005, 140(12):1204-1209.
  • [34]Svensk AM, Soini Y, Paakko P, Hiravikoski P, Kinnula VL: Differential expression of superoxide dismutases in lung cancer. Am J Clin Pathol 2004, 122(3):395-404.
  • [35]Epperly MW, Defilippi S, Sikora C, Gretton J, Kalend A, Greenberger JS: Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 2000, 7(12):1011-1018.
  • [36]Chung-man HJ, Zheng S, Comhair SA, Farver C, Erzurum SC: Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res 2001, 61(23):8578-8585.
  • [37]Izutani R, Katoh M, Asano S, Ohyanagi H, Hirose K: Enhanced expression of manganese superoxide dismutase mRNA and increased TNFalpha mRNA expression by gastric mucosa in gastric cancer. World J Surg 1996, 20(2):228-233.
  • [38]Connor KM, Hempel N, Nelson KK, Dabiri G, Gamarra A, Belarmino J, Van De Water L, Mian BM, Melendez JA: Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res 2007, 67(21):10260-10267.
  • [39]Ranganathan AC, Nelson KK, Rodriguez AM, Kim KH, Tower GB, Rutter JL, Brinckerhoff CE, Huang TT, Epstein CJ, Jeffrey JJ, et al.: Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. J Biol Chem 2001, 276(17):14264-14270.
  • [40]Usui S, Oveson BC, Iwase T, Lu L, Lee SY, Jo YJ, Wu Z, Choi EY, Samulski RJ, Campochiaro PA: Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radic Biol Med 2011, 51(7):1347-1354.
  • [41]Wenk J, Brenneisen P, Wlaschek M, Poswig A, Briviba K, Oberley TD, Scharffetter-Kochanek K: Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem 1999, 274(36):25869-25876.
  • [42]Schild L, Makarow P, Haroon F, Krautwald K, Keilhoff G: Distinct H2O2 concentration promotes proliferation of tumour cells after transient oxygen/glucose deprivation. Free Radic Res 2008, 42(3):237-243.
  • [43]Li F, Wang H, Huang C, Lin J, Zhu G, Hu R, Feng H: Hydrogen peroxide contributes to the manganese superoxide dismutase promotion of migration and invasion in glioma cells. Free Radic Res 2011, 45(10):1154-1161.
  • [44]Kato S, Esumi H, Hirano A, Kato M, Asayama K, Ohama E: Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in human brain tumors: relationships of iNOS to superoxide dismutase (SOD) proteins (SOD1 and SOD2), Ki-67 antigen (MIB-1) and p53 protein. Acta Neuropathol 2003, 105(4):333-340.
  • [45]Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F: The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 2003, 13(3):145-157.
  • [46]Sutton A, Imbert A, Igoudjil A, Descatoire V, Cazanave S, Pessayre D, Degoul F: The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics 2005, 15(5):311-319.
  • [47]Nelson KK, Ranganathan AC, Mansouri J, Rodriguez AM, Providence KM, Rutter JL, Pumiglia K, Bennett JA, Melendez JA: Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res 2003, 9(1):424-432.
  • [48]Svineng G, Ravuri C, Rikardsen O, Huseby NE, Winberg JO: The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 2008, 49(3):197-202.
  • [49]Nelson KK, Melendez JA: Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004, 37(6):768-784.
  • [50]Marklund SL, Bjelle A, Elmqvist LG: Superoxide dismutase isoenzymes of the synovial fluid in rheumatoid arthritis and in reactive arthritides. Ann Rheum Dis 1986, 45(10):847-851.
  • [51]Ganguly K, Depner M, Fattman C, Bein K, Oury TD, Wesselkamper SC, Borchers MT, Schreiber M, Gao F, von Mutius E, et al.: Superoxide dismutase 3, extracellular (SOD3) variants and lung function. Physiol Genomics 2009, 37(3):260-267.
  • [52]Naganuma T, Nakayama T, Sato N, Fu Z, Soma M, Aoi N, Hinohara S, Doba N, Usami R: Association of extracellular superoxide dismutase gene with cerebral infarction in women: a haplotype-based case–control study. Hereditas 2008, 145(6):283-292.
  • [53]Lei XG, Cheng WH, McClung JP: Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr 2007, 27:41-61.
  • [54]Raaschou-Nielsen O, Sorensen M, Hansen RD, Frederiksen K, Tjonneland A, Overvad K, Vogel U: GPX1 Pro198Leu polymorphism, interactions with smoking and alcohol consumption, and risk for lung cancer. Cancer Lett 2007, 247(2):293-300.
  • [55]Cox DG, Tamimi RM, Hunter DJ: Gene x Gene interaction between MnSOD and GPX-1 and breast cancer risk: a nested case–control study. BMC Cancer 2006, 6(217):217.
  • [56]Steinbrecher A, Meplan C, Hesketh J, Schomburg L, Endermann T, Jansen E, Akesson B, Rohrmann S, Linseisen J: Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer Epidemiol Biomarkers Prev 2010, 19(11):2958-2968.
  • [57]Bhatti P, Stewart PA, Hutchinson A, Rothman N, Linet MS, Inskip PD, Rajaraman P: Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol Biomarkers Prev 2009, 18(6):1841-1848.
  • [58]Snyder SH, Ferris CD: Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000, 157(11):1738-1751.
  • [59]Baranano DE, Ferris CD, Snyder SH: Atypical neural messengers. Trends Neurosci 2001, 24(2):99-106.
  • [60]Chatterjee S, Pal JK: Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. Biol Cell 2009, 101(5):251-262.
  文献评价指标  
  下载次数:3次 浏览次数:6次