期刊论文详细信息
BMC Genetics
A gain-of-function screen to identify genes that reduce lifespan in the adult of Drosophila melanogaster
Kenji Matsuno3  Tomoko Yamakawa3  Takeshi Sasamura3  Junpei Kuroda3  Mai Adachi3  Alice Tsuboi3  Sei-ichi Tanuma4  Yasufumi Murakami6  Masaya Ohtsu6  Wataru Gunji6  Toshiro Aigaki5  Masataka Taki6  Kengo Kato6  Asako Minami6  Yoshie Taikou6  Hironori Ishikawa6  Hiroyuki Yashiro6  Takayuki Okuda6  Takao Usui6  Hiroyasu Sato6  Hiroyuki O Ishikawa1  Tomoki Ishibashi3  Minoru Nakayama2 
[1] Graduate School of Science, Chiba University, Chiba, Chiba 263-8522, Japan;Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan;Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;Genome and Drug Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan;Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan;Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
关键词: Gene misexpression;    Reduced lifespan;    Apoptosis;    Drosophila;    Genetic screen;   
Others  :  866261
DOI  :  10.1186/1471-2156-15-46
 received in 2013-07-01, accepted in 2014-04-08,  发布年份 2014
PDF
【 摘 要 】

Background

Several lines of evidence associate misregulated genetic expression with risk factors for diabetes, Alzheimer’s, and other diseases that sporadically develop in healthy adults with no background of hereditary disorders. Thus, we are interested in genes that may be expressed normally through parts of an individual’s life, but can cause physiological defects and disease when misexpressed in adulthood.

Results

We attempted to identify these genes in a model organism by arbitrarily misexpressing specific genes in adult Drosophila melanogaster, using 14,133 Gene Search lines. We identified 39 “reduced-lifespan genes” that, when misexpressed in adulthood, shortened the flies’ lifespan to less than 30% of that of control flies. About half of these genes have human orthologs that are known to be involved in human diseases. For about one-fourth of the reduced-lifespan genes, suppressing apoptosis restored the lifespan shortened by their misexpression. We determined the organs responsible for reduced lifespan when these genes were misexpressed specifically in adulthood, and found that while some genes induced reduced lifespan only when misexpressed in specific adult organs, others could induce reduced lifespan when misexpressed in various organs. This finding suggests that tissue-specific dysfunction may be involved in reduced lifespan related to gene misexpression. Gene ontology analysis showed that reduced-lifespan genes are biased toward genes related to development.

Conclusions

We identified 39 genes that, when misexpressed in adulthood, shortened the lifespan of adult flies. Suppressing apoptosis rescued this shortened lifespan for only a subset of the reduced-lifespan genes. The adult tissues in which gene misexpression caused early death differed among the reduced-lifespan genes. These results suggest that the cause of reduced lifespan upon misexpression differed among the genes.

【 授权许可】

   
2014 Nakayama et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727051347346.pdf 1135KB PDF download
124KB Image download
72KB Image download
70KB Image download
99KB Image download
【 图 表 】

【 参考文献 】
  • [1]Benz CC, Yau C: Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 2008, 8(11):875-879.
  • [2]Polidori MC: Oxidative stress and risk factors for Alzheimer’s disease: clues to prevention and therapy. J Alzheimers Dis 2004, 6(2):185-191.
  • [3]von Figura G, Hartmann D, Song Z, Rudolph KL: Role of telomere dysfunction in aging and its detection by biomarkers. J Mol Med 2009, 87(12):1165-1171.
  • [4]Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC: Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 1996, 73(4):979-987.
  • [5]Ray SK, Wilford GG, Crosby CV, Hogan EL, Banik NL: Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res 1999, 829(1–2):18-27.
  • [6]Saito K, Elce JS, Hamos JE, Nixon RA: Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 1993, 90(7):2628-2632.
  • [7]Prolla TA: DNA microarray analysis of the aging brain. Chem Senses 2002, 27(3):299-306.
  • [8]Zou S, Meadows S, Sharp L, Jan LY, Jan YN: Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A 2000, 97(25):13726-13731.
  • [9]Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, et al.: The genome sequence of Drosophila melanogaster. Science 2000, 287(5461):2185-2195.
  • [10]Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, et al.: Comparative genomics of the eukaryotes. Science 2000, 287(5461):2204-2215.
  • [11]Min KT, Benzer S: Preventing neurodegeneration in the Drosophila mutant bubblegum. Science 1999, 284(5422):1985-1988.
  • [12]Fortini ME, Bonini NM: Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. Trends Genet 2000, 16(4):161-167.
  • [13]Lu B, Vogel H: Drosophila models of neurodegenerative diseases. Annu Rev Pathol 2009, 4:315-342.
  • [14]Iijima K, Iijima-Ando K: Drosophila models of Alzheimer’s amyloidosis: the challenge of dissecting the complex mechanisms of toxicity of amyloid-beta 42. J Alzheimers Dis 2008, 15(4):523-540.
  • [15]Botella JA, Bayersdorfer F, Gmeiner F, Schneuwly S: Modelling Parkinson’s disease in Drosophila. Neuromolecular Med 2009, 11(4):268-280.
  • [16]Toba G, Ohsako T, Miyata N, Ohtsuka T, Seong KH, Aigaki T: The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genet 1999, 151(2):725-737.
  • [17]Seong KH, Ogashiwa T, Matsuo T, Fuyama Y, Aigaki T: Application of the gene search system to screen for longevity genes in Drosophila. Biogerontology 2001, 2(3):209-217.
  • [18]Laviolette MJ, Nunes P, Peyre JB, Aigaki T, Stewart BA: A genetic screen for suppressors of Drosophila NSF2 neuromuscular junction overgrowth. Genetics 2005, 170(2):779-792.
  • [19]Kanuka H, Hiratou T, Igaki T, Kanda H, Kuranaga E, Sawamoto K, Aigaki T, Okano H, Miura M: Gain-of-function screen identifies a role of the Sec61alpha translocon in Drosophila postmitotic neurotoxicity. Biochim Biophys Acta 2005, 1726(3):225-237.
  • [20]Katsuyama T, Sugawara T, Tatsumi M, Oshima Y, Gehring WJ, Aigaki T, Kurata S: Involvement of winged eye encoding a chromatin-associated bromo-adjacent homology domain protein in disc specification. Proc Natl Acad Sci U S A 2005, 102(44):15918-15923.
  • [21]Zhang D, Zhou W, Yin C, Chen W, Ozawa R, Ang LH, Anandan L, Aigaki T, Hing H: Misexpression screen for genes altering the olfactory map in Drosophila. Genesis 2006, 44(4):189-201.
  • [22]Brand AH, Perrimon N: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118(2):401-415.
  • [23]Rohn TT, Head E: Caspase activation in Alzheimer’s disease: early to rise and late to bed. Rev Neurosci 2008, 19(6):383-393.
  • [24]Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, Sapino A, Zhang F, Sharma D, Yang XH, Tora AD, Mehta K: Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 2002, 21(57):8843-8851.
  • [25]Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, Henson J, Posner JB, Furneaux HM: HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 1991, 67(2):325-333.
  • [26]Hirvonen-Santti SJ, Rannikko A, Santti H, Savolainen S, Nyberg M, Janne OA, Palvimo JJ: Down-regulation of estrogen receptor beta and transcriptional coregulator SNURF/RNF4 in testicular germ cell cancer. Eur Urol 2003, 44(6):742-747. discussion 747
  • [27]Pero R, Lembo F, Di Vizio D, Boccia A, Chieffi P, Fedele M, Pierantoni GM, Rossi P, Iuliano R, Santoro M, Viglietto G, Bruni CB, Fusco A, Chiariotti L: RNF4 is a growth inhibitor expressed in germ cells but not in human testicular tumors. Am J Pathol 2001, 159(4):1225-1230.
  • [28]Phelan DR, Price G, Liu YF, Dorow DS: Activated JNK phosphorylates the c-terminal domain of MLK2 that is required for MLK2-induced apoptosis. J Biol Chem 2001, 276(14):10801-10810.
  • [29]Strebhardt K: in PLK (Polo-Like Kinase): Encyclopedia of Molecular Medicine, ed Creighton T E (Wiley, New York). 2001, 2530-2532.
  • [30]Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M: Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A 2007, 104(44):17494-17499.
  • [31]Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen B, van Ommen GJ, Blonden L, Riggins G, Chastain J, Kunat C, Galjaard H, Caskey CT, Nelson D, Oostra B, Warren S: Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65(5):905-914.
  • [32]Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Negre N, Ludwig M, Stricker T, Al-Ahmadie HA, Tretiakova M, Camp RL, Perera-Alberto M, Rimm DL, Xu T, Rzhetsky A, White KP: Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 2009, 323(5918):1218-1222.
  • [33]Babbar N, Casero RA Jr: Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 2006, 66(23):11125-11130.
  • [34]Goodwin AC, Jadallah S, Toubaji A, Lecksell K, Hicks JL, Kowalski J, Bova GS, De Marzo AM, Netto GJ, Casero RA Jr: Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues. Prostate 2008, 68(7):766-772.
  • [35]Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD, Potosky D, Meltzer SJ, Rhee JG, Kim SS, Moss SF, Hacker A, Wang Y, Casero RA Jr, Wilson KT: Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 2004, 64(23):8521-8525.
  • [36]Bonaglia MC, Giorda R, Tenconi R, Pessina M, Pramparo T, Borgatti R, Zuffardi O: A 2.3 Mb duplication of chromosome 8q24.3 associated with severe mental retardation and epilepsy detected by standard karyotype. Eur J Hum Genet 2005, 13(5):586-591.
  • [37]Hosoya N, Qiao Y, Hangaishi A, Wang L, Nannya Y, Sanada M, Kurokawa M, Chiba S, Hirai H, Ogawa S: Identification of a SRC-like tyrosine kinase gene, FRK, fused with ETV6 in a patient with acute myelogenous leukemia carrying a t(6;12)(q21;p13) translocation. Genes Chromosomes Cancer 2005, 42(3):269-279.
  • [38]Baum JS, Arama E, Steller H, McCall K: The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 2007, 14(8):1508-1517.
  • [39]Liu YF, Dorow D, Marshall J: Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. J Biol Chem 2000, 275(25):19035-19040.
  • [40]Jabbour AM, Ekert PG, Coulson EJ, Knight MJ, Ashley DM, Hawkins CJ: The p35 relative, p49, inhibits mammalian and Drosophila caspases including DRONC and protects against apoptosis. Cell Death Differ 2002, 9(12):1311-1320.
  • [41]Peterson C, Carney GE, Taylor BJ: White K: reaper is required for neuroblast apoptosis during Drosophila development. Development 2002, 129(6):1467-1476.
  • [42]Vucic D, Kaiser WJ, Harvey AJ, Miller LK: Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc Natl Acad Sci U S A 1997, 94(19):10183-10188.
  • [43]Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992, 119(3):493-501.
  • [44]Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP: Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 2007, 134(20):3733-3742.
  • [45]McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL: Spatiotemporal rescue of memory dysfunction in Drosophila. Science 2003, 302(5651):1765-1768.
  • [46]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. Gene Ontology Consortium Nat Genet 2000, 25(1):25-29.
  • [47]Eisenberg E, Levanon EY: Human housekeeping genes are compact. Trends Genet 2003, 19(7):362-365.
  • [48]Martin-Bermudo MD, Dunin-Borkowski OM, Brown NH: Specificity of PS integrin function during embryogenesis resides in the alpha subunit extracellular domain. EMBO J 1997, 16(14):4184-4193.
  • [49]Michelson AM: Muscle pattern diversification in Drosophila is determined by the autonomous function of homeotic genes in the embryonic mesoderm. Development 1994, 120(4):755-768.
  • [50]Green RB, Hatini V, Johansen KA, Liu XJ, Lengyel JA: Drumstick is a zinc finger protein that antagonizes Lines to control patterning and morphogenesis of the Drosophila hindgut. Development 2002, 129(15):3645-3656.
  • [51]Iwaki DD, Lengyel JA: A Delta-Notch signaling border regulated by Engrailed/Invected repression specifies boundary cells in the Drosophila hindgut. Mech Dev 2002, 114(1–2):71-84.
  • [52]Hozumi S, Maeda R, Taniguchi K, Kanai M, Shirakabe S, Sasamura T, Speder P, Noselli S, Aigaki T, Murakami R, Matsuno K: An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 2006, 440(7085):798-802.
  • [53]Tian C, Gao B, Fang Q, Ye G, Zhu S: Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics 2010, 11:187. BioMed Central Full Text
  • [54]Villa P, Kaufmann SH, Earnshaw WC: Caspases and caspase inhibitors. Trends Biochem Sci 1997, 22(10):388-393.
  文献评价指标  
  下载次数:20次 浏览次数:19次