期刊论文详细信息
BMC Neuroscience
Fetal brain genomic reprogramming following asphyctic preconditioning
Antonio WD Gavilanes3  Eveline Strackx3  Luc JI Zimmermann3  Jana Schlechter1  Johan SH Vles2  Kimberly EM Cox-Limpens3 
[1] School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200, MD Maastricht, The Netherlands;Department of Pediatric Neurology, Maastricht University Medical Center (MUMC), P.Debyelaan 25, 6229, HX Maastricht, The Netherlands;Department of Pediatrics, Maastricht University Medical Center (MUMC), Postbus 5800, Maastricht, AZ, 6202, The Netherlands
关键词: Preconditioning;    Micro-array;    Hypoxia-ischemia;    Fetal brain;    Epigenetic;    Asphyxia;   
Others  :  1140255
DOI  :  10.1186/1471-2202-14-61
 received in 2012-12-21, accepted in 2013-06-20,  发布年份 2013
PDF
【 摘 要 】

Background

Fetal asphyctic (FA) preconditioning is effective in attenuating brain damage incurred by a subsequent perinatal asphyctic insult. Unraveling mechanisms of this endogenous neuroprotection, activated by FA preconditioning, is an important step towards new clinical strategies for asphyctic neonates. Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of preconditioning. Therefore we investigated whole genome differential gene expression in the preconditioned rat brain. FA preconditioning was induced on embryonic day 17 by reversibly clamping uterine circulation. Male control and FA offspring were sacrificed 96 h after FA preconditioning. Whole genome transcription was investigated with Affymetrix Gene1.0ST chip.

Results

Data were analyzed with the Bioconductor Limma package, which showed 53 down-regulated and 35 up-regulated transcripts in the FA-group. We validated these findings with RT-qPCR for adh1, edn1, leptin, rdh2, and smad6. Moreover, we investigated differences in gene expression across different brain regions. In addition, we performed Gene Set Enrichment Analysis (GSEA) which revealed 19 significantly down-regulated gene sets, mainly involved in neurotransmission and ion transport. 10 Gene sets were significantly up-regulated, these are mainly involved in nucleosomal structure and transcription, including genes such as mecp2.

Conclusions

Here we identify for the first time differential gene expression after asphyctic preconditioning in fetal brain tissue, with the majority of differentially expressed transcripts being down-regulated. The observed down-regulation of cellular processes such as neurotransmission and ion transport could represent a restriction in energy turnover which could prevent energy failure and subsequent neuronal damage in an asphyctic event. Up-regulated transcripts seem to exert their function mainly within the cell nucleus, and subsequent Gene Set Enrichment Analysis suggests that epigenetic mechanisms play an important role in preconditioning induced neuroprotection.

【 授权许可】

   
2013 Cox-Limpens et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324180030130.pdf 545KB PDF download
Figure 4. 16KB Image download
Figure 3. 204KB Image download
Figure 2. 68KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Shankaran S, Pappas A, Laptook AR, McDonald SA, Ehrenkranz RA, Tyson JE, Walsh M, Goldberg RN, Higgins RD, Das A: Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic-ischemic encephalopathy. Pediatr 2008, 122(4):e791-798.
  • [2]Dahl N, Balfour WM: Prolonged anoxic survival due to anoxic pre-exposure: brain ATP, lactate, and pyruvate. Ann J Physiol 1964, 207(2):452-456.
  • [3]Dirnagl U, Becker K, Meisel A: Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009, 8:398-412.
  • [4]Feng DD Z, Sasik R, Patel HH, Drummond JC, Patel PM: Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Res 2007, 1177:103-123.
  • [5]Gustavsson M, Wilson MA, Mallard C, Rousset C, Johnston MV, Hagberg H: Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms. Pediatr Res 2007, 61(4):444-450.
  • [6]Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, et al.: Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 2003, 362:1028-1037.
  • [7]Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR: Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. J Biol Chem 2002, 277(42):39728-39738.
  • [8]Kawahara N, Wang Y, Mukasa A, Furuya K, Shimizu T, Hamakubo T, Aburatani H, Kodama T, Kirino T: Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. J Cereb Blood Flow Metab 2004, 24:212-223.
  • [9]Xu H, Lu A, Sharp FR: Regional genome transcriptional response of adult mouse brain to hypoxia. BMC Genomics 2011, 12:499. BioMed Central Full Text
  • [10]Tang Y, Pacary E, Freret T, Divoux D, Petit E, Schumann-Bard P, Bernaudin M: Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potentials neuroprotective candidates for stroke. Neurobiol Dis 2006, 21:18-28.
  • [11]Strackx E, Zoer B, Van den Hove D, Steinbusch H, Steinbusch H, Blanco C, Vles JS, Villamor E, Gavilanes AW: Brain apoptosis and carotid artery reactivity in fetal asphyctic preconditioning. Front Biosci 2010, 1(2):781-790.
  • [12]Strackx E, Zoer B, Van den Hove D, Prickaerts J, Zimmermann L, Steinbusch HW, Blanco CE, Gavilanes AW, Vles JS: Fetal asphyctic preconditioning protects against perinatal asphyxia-induced behavioral consequences in adulthood. Behav Brain Res 2010, 208(2):343-351.
  • [13]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gilette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 2005, 102(43):155545-155550.
  • [14]Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nat 1998, 393(6683):386-389.
  • [15]Brand DM, Ratan RV: Epigenetics and the environment: In search of the “toleroasome” vital to execution of ischemic preconditioning. Transl Stroke Res 2013, 4:56-62.
  • [16]Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM: Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007, 321(3):892-901.
  • [17]Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA: Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neurosci 2009, 159(3):993-1002.
  • [18]Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, Simon RP, Saugstad JA: Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab 2010, 30:744-756.
  • [19]Endres M, Fan G, Meisel A, Dirnagl U, Jaenisch R: Effects of cerebral ischemia in mice lacking DNA methyltransferase 1 in post-mitotic neurons. \Neuroreport 2001, 12(17):3763-3766.
  • [20]Lau A, Tymianski M: Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010, 460:525-542.
  • [21]Huet SFI, Jouannot O, Meireles P, Zeiske T, Larochette N, Darchen F, Desnos C: Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane. J Neurosci 2012, 32(7):2564-2577.
  • [22]Manning SMBG, Fitzgerald E, Selip DB, Volpe JJ, Jensen FE: The clinically available NMDA receptor antagonist, memantine, exhibits relative safety in the developing rat brain. Int J Dev Neurosci 2011, 29(7):767-773.
  • [23]Cai ZRP: Intrauterine hypoxia-ischemia alters expression of the NMDA receptor in the young rat brain. Neurochem Res 2001, 26(5):487-495.
  • [24]Jensen F: The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 2002, 20:339-347.
  • [25]Staveren WCG, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo JA, Steinbusch HWM, De Vente J: Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 2002, 31:729-741.
  • [26]Kleiman RJ, Chapin DS, Cristoffersen C, Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajos M, Harms JF, Helal CJ: Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. JPET 2012, 341(2):396-409.
  • [27]Perez-Pinzon MA, Stetler RA, Fiskum G: Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab 2012, 32:1362-1376.
  • [28]Amantea D, Tassorelli C, Russo R, Petrelli F, Morrone LA, Bagetta G, Corasaniti MT: Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain. Cell Death Dis 2011., 2
  • [29]Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K: Smad6 inhibits signalling by the TGF-beta superfamily. Nat 1997, 389(6651):622-626.
  • [30]Boche D, Cunningham C, Gauldie J, Perry VH: Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab 2003, 23(10):1174-1182.
  • [31]White BJ, Tarabishy S, Venna VR, Manwani B, Benashski S, McCullough LD, Li J: Protection from cerebral ischemia by inhibition of TGFbeta-activated kinase. Exp Neurol 2012, 237(1):238-245.
  • [32]Reuss B, Bohlen V, Und Halbach O: Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 2003, 313:139-157.
  • [33]Tonchev AB, Yamashima T: Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus. Exp Neurol 2006, 198:101-113.
  • [34]Ma P, Zhao S, Zeng W, Yang Q, Lv X, Zhou Q, Mao B: Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. Biochem Biophys Res Commun 2011, 412(1):170-174.
  • [35]Chai X, Zhai Y, Popescu G, Napoli JL: Cloning of a cDNA for a second retinol dehydrogenase type II. J Biol Chem 1995, 270(47):28408-28412.
  • [36]Choi BK, Kim JH, Jung JS, Lee YS, Han ME, Baek SY, Kim BS, Kim JB, Oh SO: Reduction of ischemia-induced cerebral injury by all-trans-retinoic acid. Exp Brain Res 2009, 193(4):581-589.
  • [37]Nakagomi T, Kirino T, Kanemitsu H, Tsujita Y, Tamura A: Early recovery of protein synthesis following ischemia in hippocampal neurons with induced tolerance in the gerbil. Acta Neuropathol 1993, 86(1):10-15.
  • [38]Cheng J, Alkayed NJ, Hurn PD: Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J Cereb Blood Flow Metab 2007, 27(9):1553-1562.
  • [39]Gentleman R, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [40]Smyth G: Linear models and empirical bayes methods for assesing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004., 3(1) Article 3. Pubmed. http://www.ncbi.nlm.nih.gov/pubmed/16646809 webcite
  • [41]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995, 57(1):289-300.
  文献评价指标  
  下载次数:43次 浏览次数:14次